Abstract

Fourth generation (4G) wireless based on worldwide interoperability for microwave access (WiMAX) systems are a new promising technology that support high data rate transfer. Channel Estimation of system is carried out by finding Channel impulse response (CIR) of pilot subcarrier using LS or LMMSE algorithms and then finding Channel Frequency Response (CFR) at data subcarrier is done by time and frequency Interpolation of Pilot CIR. This paper presents BER performance for 16QAM & 64QAM Coded OFDM System evaluated at different Doppler frequencies. Results show that Channel Estimation over Coded-OFDM system gives better performance than OFDM.

References

- C. Eklund, R. B. Marks, K. L. Stanwood and S. Wang, "IEEE Standard 802. 16:
A Technical Overview of the Wireless MAN™ Air Interface for Broadband Wireless Access,
- IEEE 802.16-2004, Part 16: Air interface for fixed broadband wireless access systems;
- IEEE 802.16e-2005, Part 16: Air interface for fixed and mobile broadband wireless access systems;
- Upena Dalal, Wireless Communications, Oxford Higher Education, April 2010
- H. Yaghoobi, Scalable OFDMA Physical Layer in IEEE 802.16 Wireless MAN,
- M. K. Ozdemir and H. Arslan, Channel estimation for wireless OFDM systems,
- Aida Zaier, Ridha Bouallegue, Channel Estimation Study for Block-Pilot Insertion in OFDM Systems Under Slowly Time Varying Conditions,
- Masrul Faizal Moamad, Mohmmed Abdo Saeed and Akhmad Unggul Printoro,
Downlink Channel Estimation and Tracking in Mobile WiMAX Systems,
- Savitri Galin, Riafeni Karlina, Fifin Nugroho and Ade Irawan, High Mobility Data Pilot Based channel Estimation for Downlink OFDMA System Based on IEEE 802.16e Standard,

Index Terms

Computer Science Wireless

Keywords
Coded OFDM System (C-OFDM) Channel Estimation LS LMMSE Channel Impulse Response (CIR)

Channel Frequency Response (CFR)

Downlink Partially Used Subchannelization (DL-PUSC).