CFP last date
22 April 2024
Reseach Article

Subsequently 90 Repositioned Triple E Shaped Microstrip Patch Antenna Design for Multiband Application

by Razin Ahmed, Shahriar Rahman, Tanver Ahmed
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 85 - Number 17
Year of Publication: 2014
Authors: Razin Ahmed, Shahriar Rahman, Tanver Ahmed
10.5120/14935-3496

Razin Ahmed, Shahriar Rahman, Tanver Ahmed . Subsequently 90 Repositioned Triple E Shaped Microstrip Patch Antenna Design for Multiband Application. International Journal of Computer Applications. 85, 17 ( January 2014), 31-35. DOI=10.5120/14935-3496

@article{ 10.5120/14935-3496,
author = { Razin Ahmed, Shahriar Rahman, Tanver Ahmed },
title = { Subsequently 90 Repositioned Triple E Shaped Microstrip Patch Antenna Design for Multiband Application },
journal = { International Journal of Computer Applications },
issue_date = { January 2014 },
volume = { 85 },
number = { 17 },
month = { January },
year = { 2014 },
issn = { 0975-8887 },
pages = { 31-35 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume85/number17/14935-3496/ },
doi = { 10.5120/14935-3496 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:02:43.987899+05:30
%A Razin Ahmed
%A Shahriar Rahman
%A Tanver Ahmed
%T Subsequently 90 Repositioned Triple E Shaped Microstrip Patch Antenna Design for Multiband Application
%J International Journal of Computer Applications
%@ 0975-8887
%V 85
%N 17
%P 31-35
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Wireless communication system and technology opened a new horizon around the world through electromagnetic spectrum. As the technology evolving demand for high and continuous data connectivity in satellite and radar communication has been growing faster, researchers are facing challenges to integrate cost efficient, miniature size and multiband operating antenna in wireless devices. Microstrip Patch Antenna can fulfill all requirements but there is always a trade-off between the performance and design. In this paper modified slots with reconfigured E shapes Microstrip Patch antenna is designed and analyzed for multiband wireless application. The probe feeding technique and design structure provides the antenna to operate in five different frequencies. The antenna resonates at 7. 81 GHz in C band, 8. 31 GHz, 9. 65 GHz and 11. 86 GHz in X band, and 13. 2GHz and 14. 79 GHz in Ku band with return loss of -19. 26 dB, -24. 82 dB, -13. 18 dB, -33. 61 dB, -12. 46 dB and -12. 04 dB respectively of proposed antenna have been examined and discussed.

References
  1. Puente, Borja, Navarro, and Romeu, "An Iterative Model for Fractal Antennas: Application to the Sierpinski Gasket Antenna", IEEE Transactions on Antennas and Propagation, Vol. 48, No. 5, pp 713-719, May 2000.
  2. Z. D. Liu, P. S. Hall, and D. Wake, Dual-frequency planar inverted-F antenna, IEEE Trans Antennas Propagat 45 (1997), 1451–1458.
  3. David M. Pozar, "Microstrip Antennas", Proceedings of IEEE, Vol. 80, No. 1, January 1992.
  4. Ramesh, G. , B. Prakash, B. Inder, and I. Apisak, Microstrip Antenna Design Handbook, Artech House, USA, 2001.
  5. James, J. R. and Hall, P. S. , "Handbook of Microstrip Antennas" (Peter Peregrinus), Vol. 2, 1989
  6. Constantine A. Balanis, "Antenna Theory: Analysis and Design", John Wiley & Sons, 3rd Edition, 2005
  7. C. L. Tang, H. T. Chen, and K. L. Wong, "Small circular Microstrip antenna with dual-frequency operation," IEEE Electron. Lett. , vol. 33, no. 13, pp. 1112–1113, Jun. 1997.
  8. K. L. Wong and W. S. Chen, "Compact microstrip antenna with dual frequency operation," IEEE Electron. Lett. , vol. 33, no. 8, pp. 646–647, Apr. 1997.
  9. S. C. Pan and K. L. Wand, "Dual frequency triangular Microstrip antenna with shorting pin," IEEE Trans. Antennas Propag. , vol. 45, pp. 1889–1891, Dec. 1997.
  10. J. F. Zurcher, A. Skrivervik, O. Staub, and S. Vaccaro, "A compact dual-port dual-frequency printed antenna with high decoupling," Microw Opt. Technol. Lett. , vol. 19, pp. 131–137, Oct. 1998.
  11. Indra Surjati, "Dual Frequency Operation Triangular Microstrip Antenna Using A Pair Of Slit", 2005 Asia-Pacific Conference on Communications, Perth, Western Australia, pp. 125-127, 3 – 5, October 2005.
  12. L. Zaid, G. Kossiavas, J. Y. Dauvignac, J. Cazajous, and A. Papiemik, "Dual-frequency and broadband antennas with stacked quarter wavelength elements," IEEE Trans. Antennas Propag. , vol. 47, no. 4, pp. 654–660, Apr. 1999.
  13. J. S. Dahele, K. F. Lee, and D. P. Wong, "Dual frequency stacked annular ring microstrip antenna," IEEE Trans. Antennas Propag. , vol. 35, no. 11, pp. 1281–1285, Nov. 1987.
  14. F. Croq and D. M. Pozar, "Multi-frequency operation on Microstrip antennas using aperture coupled parallel resonators," IEEE Trans. Antennas Propag. , vol. 40, no. 11, pp. 1367–1374, Nov. 1992.
  15. J. Wang, R. Fralich, C. Wu, and J. Litva, "Multifunctional aperture coupled stack patch antenna," IEEE Electron. Lett. , vol. 26, no. 25, pp. 2067–2068, Dec. 1990.
  16. D. Peroulis, K. Sarabandi and L. B. P. Katehi. 2005. Design of reconfigurable slot antennas. IEEE Trans. Antennas Propag. , vol. 53, no. 7, pp. 645-654.
  17. H. Okabe and K. Takei. 2001. Tunable antenna system for 1. 9 GHz PCS handsets. IEEE Antennas Propag. Int. Symp. , vol. 1, pp. 166- 169.
  18. F. Yang and Y. R. Samii. 2002. A reconfigurable patch antenna using switchable slots for circular polarization diversity. IEEE Micro. Wireless Comp. Lett. , vol. 12, no. 3, pp. 96-98.
  19. S. Maci, G. B. Gentili, P. Piazzesi, and C. Salvador, "Dual band slot loaded patch antenna," Proc. Inst. Elect. Eng. Microw. Antennas Propag. , vol. 142, pp. 225–232, Jun. 1995.
  20. B. F. Wang and Y. T. Lo, "Microstrip antennas for dual-frequency operation," IEEE Trans. Antennas Propag. , vol. 32, pp. 938–943, Sep. 1984.
  21. Yang Fan, Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications" IEEE Transactions on Antennas and Propagation, Volume:51 , Issue: 10, pp: 2936-2946, Oct. 2003.
  22. N. G. Alexopoulos and D. R. Jackson, "Fundamental superstrate (cover) effects on printed circuit antennas," IEEE Trans. Antennas Propag. , vol. AP-32, pp. 807–816, Aug. 1984.
  23. Kim, J. , H. Kim, and K. Chun, Performance enhancements of a microstrip antenna with multiple layer substrates," International Symposium on Signals, Systems and Electronics 2007 (ISSSE '07), 319{322, 2007.
  24. K. F. Lee and R. Q Lee, "Microstrip subarray with coplanar and stacked parasitic elements", Electronics Letters, Volume: 26, Issue: 10, 1 May 1990. Transactions on Antennas and Propagation, Volume: 51 , Issue: 10, pp: 2936-2946, Oct. 2003.
  25. X. L. Bao, M. J. Ammann, "Small patch/slot antenna with 53% input impedance bandwidth", Electronics Letters, Volume 43, Issue 3, pp. 146 – 148, Feb 2007.
  26. Razin Ahmed, Md. Fokrul Islam, "E shaped Microstrip Patch Antenna for Ku band" Published in International Journal of Computer Applications Volume 80, No. 6, October 2013
Index Terms

Computer Science
Information Sciences

Keywords

Microstrip Patch Antenna (MPA) Rectangular Microstrip Patch Antenna (RMPA) Electromagnetic (EM)