Abstract

Medical image security can be enhanced using the reversible watermarking technique, it allows us to embed the relevant information with the image, which provides confidentiality, integrity and authentication by embedding RSA encrypted digital signature with the image. Protection of Medical Image content is very much important for tele-diagnosis and tele-surgery. Our work proposes a novel algorithms AHF (Additive Hash Function) and RSA for the production of DS (Digital Signature) to achieve high confidentiality and Authentication. An image is compressed using JPEG2000 (DWT) algorithm and EPR (Electronic Patient Record) is embedded in RONI (Region of Non Interest) of compressed image using Lossless Watermarking Technique then shared through the open network. The PSNR (peak Signal to Noise ratio) value is up to 72dBs for 512x512 US(Ultrasonic) images. Increase in Authentication can be achieved when medical expert’s access secured medical images from the web servers using Kerberos technique.
watermarking for knowledge digest embedding and reliability control in medical images, IEEE Ransaction on information technology in biomedicine, vol. 13, No. 2, March 2009.


- Li-Qun Kuang, Yuan Zhang, Xie Han, "A medical image authentication system based on reversible digital watermarking," in IEEE, 1st international conference on information science and engineering (ICISE 2009), pp 1047-1050.


- A. Umamageswari, Dr. G. R. Suresh, "Enhancing Security In Medical Image
A New Cryptographic Digital Signature for Secure Medical Image Communication in Telemedicine

Communication With JPEG2000 Compression And Lossless Watermarking; in the proceedings of the fourth international conference on Signals and image processing 2012 -ICSIP2012,Lecture notes in Electrical Engineering 221,DOI:10. 1007/978-81-322-0997-3_36, Springer India 2013, pp 399-408.


Index Terms

Computer Science

Security

Keywords

Lossless Watermarking; Medical Image Security; medical Image Compression; Authentication and Confidentiality; JPEG2000 Compression; Kerberos; AHF; RSA