Abstract

Safety or mission critical applications have to recover from an error within an acceptable time window or it may potentially lead to disastrous effects or higher costs. The usual industrial practice is to employ fault tolerance using hardware redundancy where costs are highly exorbitant depending on the mission. In this paper, we present a framework for adaptive fault tolerance on the commonly used hardware redundancy. This proposed model gives enhanced resource management and improved system performance under normal runtime and provides minimal safe functionality under error conditions. A new scheduling method, a combination of dynamic planning and dynamic best effort approach has been designed for joint scheduling of periodic and aperiodic tasks which also include online reconfiguration for error management. This fault recovery technique allows all critical tasks to meet their deadlines and the system continues functioning with minimal safe functionality upon errors. This model has been analyzed and evaluated on a practical case study of a Cruise Control System vis-à-vis a traditional redundancy scheme with simulation and validated with appropriate performance metrics. The results demonstrate the high performance throughput and process speedup (Execution time of process) that can be gained by applying this model to an m-processor.
Design, Analysis and Implementation of Improved Adaptive Fault Tolerant Model for Cruise Control Multiprocessor System

redundancy model and the advantages can be accrued specially in the field of avionics in terms of fuel/weight ratio.

References

- Radhamani Pillay, Senthil Kumar Chandran, and Sasikumar Punnekkat, "Optimizing resources in real-time scheduling for fault tolerant processors", IEEE, International Conference on Parallel, Distributed and Grid Computing (PDGC-2010), Solan India; October 2010.
- Senthil Kumar Chandran, Radhamani Pillay, Radu Dobrin, and Sasikumar Punnekkat, "Efficient scheduling with adaptive fault tolerance in heterogeneous multiprocessor
Design, Analysis and Implementation of Improved Adaptive Fault Tolerant Model for Cruise Control Multiprocessor System

- N. Audsley, A. Burns, "Real time scheduling", Department of Computer Science, University of York, UK.
- Krithi Ramamritham, member, IEEE, and John A. Stankovic, fellow, IEEE "Scheduling Algorithms and Operating Systems Support for Real-Time Systems".
- John C. Knight, "Safety Critical Systems: Challenges and Directions",
- Gurulingesh R, Neera Sharma, Krithi Ramamritham and Sachitanand Malewar, "Efficient Real-Time Support for Automotive Applications: A Case Study",
- Brinkley Sprunt, "Aperiodic Task Scheduling for Real-Time Systems",
- Chenyang Lu, John A. Stankovic, Tarek F. Abdelzaher, "Performance Specifications and Metrics for Adaptive Real-Time Systems",
- Anthony Spiteri Staines, "Modeling and Analysis of Real Time Control Systems: A Cruise Control System Case Study",

Index Terms

- Computer Science
- System Design

Keywords
- Fault tolerance
- resource management
- Cruise control system
- Process speedup.