Identification of Elastic Parameters by Treating the Inverse Problem

International Journal of Computer Applications
© 2014 by IJCA Journal
Volume 86 - Number 15
Year of Publication: 2014
El Hanafi Arjdal
Jamal Chaoufi
Claude Vallee
Abdelaziz Ghafiri
Arnaud Germaneau
Hassan Fatmaoui

El Hanafi Arjdal, Jamal Chaoufi, Claude Vallee, Abdelaziz Ghafiri, Arnaud Germaneau and Hassan Fatmaoui. Article: Identification of Elastic Parameters by Treating the Inverse Problem. International Journal of Computer Applications 86(15):38-41, January 2014. Full text available. BibTeX

	author = {El Hanafi Arjdal and Jamal Chaoufi and Claude Vallee and Abdelaziz Ghafiri and Arnaud Germaneau and Hassan Fatmaoui},
	title = {Article: Identification of Elastic Parameters by Treating the Inverse Problem},
	journal = {International Journal of Computer Applications},
	year = {2014},
	volume = {86},
	number = {15},
	pages = {38-41},
	month = {January},
	note = {Full text available}


The aim of this work is to lay the groundwork for identifying digital mechanical parameters of materials with elastic. Most of the tests do not allow identifying these parameters automatically. The use of the finite elements of calculations for sizing works is thus limited by a poor understanding of the mechanical properties. In this context, it raises the issue of inverse analysis [1] [2]. From this information about the parameters of the laws of material behavior, is it possible to obtain the displacement field from in situ measurements and how does digital technology obtain a determination of these parameters accurately and systematically? In this work we present a new approach by providing a formulation is easily used by treating the inverse problem. It is based on the finite element method, which, in a direct problem, gives the displacement field knowing the mechanical properties and an inverse problem gives the mechanical knowledge of the field trips. The resolution of the direct problem has yielded results. The latter is in agreement with the simulation code of commercial calculation. This allowed us to address the inverse problem with no understanding by offering an alternative identification using a database previously determined [3].


  • M. Grediac, F. Pierron Applying the Virtual Fields Method to the identification of elasto-plastic constitutive parameters. International Journal of Plasticity. Volume: 22. Pages: 602-627. 2006. Elsevier. .
  • S. Avril , M. Bonnet, A. -S Bretelle. , M. Grediac, F. Hild, P. Ienny, F. Latourte, D. Lemosse, E. Pagnacco, F. Pierron Identification from measurements of mechanical fields. Experimental Mechanics. Volume : 48. N°4. Pages : 381-402. 2008. Springer.
  • M. Grediac,E. Toussaint, F. Pierron L'identification des propriétés mécaniques de matériaux avec la méthode des champs virtuels, une alternative au recalage par éléments finis. Comptes rendus Mécanique. Volume : 330. N°2. Pages : 107-112. 2002. Elsevier.
  • W. Nunes dos Santos, P. Mummeryb , A. Wallwork: Thermal diffusivity of polymers by laser flash technique, Polymer Testing 24 (2005) 628-634.
  • A. Germaneau and JC Dupré: Termam exchanges and termomechanical couplings in amorphous polymers, Polymers & Polymer Composites, Vol. 16, No. 1, pp. 9-17, 2008.
  • K. Atchonouglo, M. Banna, C. Vallée and J. C Dupré, Inverse Transient Heat Conduction Problems and Application to the Estimation of Heat Transfer Coefficients, Heat and Mass Transfer, Vol. 45,Number 1, pp. 23-29, November 2008.
  • K. Atchonouglo, Identification des Paramètre Caractéristiques d'un Phénomène Mécanique ou Thermique Régi par une équation différentielle ou aux dérivées Partielles, Thèse de Doctorat, Université de Poitiers, 2007.
  • E. Barkanov, Introduction to the Finite Element Method, Institute of Materials and Structures, Faculty of Civil Engineering, Riga Technical University.
  • P. Corde et A. Fouilloux, Cours Langage Fortran, 2008