Modified Conjugate Gradient Method for Unconstrained Optimization

Print
International Journal of Computer Applications
© 2014 by IJCA Journal
Volume 86 - Number 15
Year of Publication: 2014
Authors:
Thamera K. Alkhashab
10.5120/15065-3509

Thamera K Alkhashab. Article: Modified Conjugate Gradient Method for Unconstrained Optimization. International Journal of Computer Applications 86(15):42-46, January 2014. Full text available. BibTeX

@article{key:article,
	author = {Thamera K. Alkhashab},
	title = {Article: Modified Conjugate Gradient Method for Unconstrained Optimization},
	journal = {International Journal of Computer Applications},
	year = {2014},
	volume = {86},
	number = {15},
	pages = {42-46},
	month = {January},
	note = {Full text available}
}

Abstract

Conjugate gradient method holds an important role in solving unconstrained Optimizations , especially for large scale problems. Numerous studies and modific ations have been done to improve this method . In this paper , we propose a new conjugate gradient meth od which is computed by modifying Dai and Yuan formula . This new formula for the denominator is introduced and the numerator of Dai and Yuan for mula is retrained , but still possesses global converge nce properties. Numerical results based on number of iterations and number of function evaluations by usin g exact line search have shown that the new formul a is an efficient when we comparative it with the oth er conjugate gradient methods.

References

  • Al - Baali , M . (1985) . Descent Property and Global Convergence of Fletcher- Reeves Method with Inexact Line Search . IMA J . Numer . Anal. , 5, 121-124.
  • Andrei, N. (2008). An Unconstrained Optimization Test Functions Collection. Advanced Modeling and Optimization, 10(1), 147-161.
  • Andrei, N. (2009). Accelerated Conjugate Gradient algorithm with finite difference Hessian / vector product approximation for unconstrained optimization . J,Comput Appl. Math. 230,70-582
  • Birgin, E. G. and Martinez. J. M. (2001). . A Spectral Conjugate Gradient Method for Unconstrained Optimization. J. Appl. Maths. Optim, 43,117-128.
  • Dai, Y. and Yuan, Y. (1998) . Nonlinear Conjugate Gradient method . Shanghai Scientific and Technical Publishers, Beijing.
  • Dai, Y. and Yuan, Y. (2000) . A Nonlinear Con-jugate Gradient with a Strong Global Convergence Properties. SIAM J. Optim. , 10, 177-182.
  • Dai, Y. H. and Yuan, Y. (2002). A Note on The Nonlinear Conjugate Gradient Method. J,Comput. Appl. Math. , 18(6), 575-582.
  • Dai, Y. H. , Han, J. Y. , Liu, G. H. , Sun, D. F. , Yin, X. and Yuan, Y. (1999). Convergence Properties of Properties of Nonlinear Conjugate Gradient Method. SIAM J. Optim. , 10, 348-358.
  • Fletcher,R. and Reeves, C. (1964). Function Minimization by Conjugate Gradients. Comput. J. , 7, 149-154.
  • Gilbert, J. C. and Nocedal, J. (1992). Global Convergence Properties of Conjugate Gradient Methods for optimization. SIAM J. Optim. , 2(1),21-42.
  • Hager,W. W and Zhang, H. C. (2005). A New Conjugate Gradient Method with Guaranteed Descent and efficient line search. SIAM J. Optim. , 16, 170-192.
  • Hestenes, M. R. and Steifel, E . (1952) . Method Of Conjugate Gradient for Solving Linear Equations. J,Res. Nat. Bur. Stand. , 49, 409-436.
  • Liu,Y. and Storey, C. (1992). Efficient Generalized conjugate gradient algorithms part 1:theory. J,Comput. Appl. Math. , 69, 129-137.
  • Mustafa Mamat , Mohd Rivaie , Islam Mohdand Muhammad Fauzi. (2010). A New Conjugate Gradient Coefficient for Unconstrained Optimization. Int. J. Contemp . Math . Sciences ,5(29),1429-1437.
  • Polak , E. and , Ribiere, G. (1969). Note Sur La Convergence De Directions Conjugees. Rev. Francaise Informat Recherche Operationelle,3EAnnee(16), 35-43.
  • Powell, M. J. D. (1986). Convergence Properties of Algorithm for Nonlinear Optimization. SIAM Review. , 28(4), 487-500.
  • Rivaie. M , Fauzi. M, Mamat . M and Mohd . I . (2011). Modified Hestenes-Steifel Method forfor Unconstrained Optimization. J. Appl Sciences,11(8): DOI:10. 3923/jas. 2011. 1461-1464
  • Shi, Z. J. and Gao, J. (2009). A New Family of,Conjugate Gradient Methods. J,Comput. Appl. Math. , 224, 444-457.
  • Sun, J. and Zhang, J. (2001). Global Convergence of Conjugate Gradient Methods without Line Search. Annals. Opr. Rch, 103, 161-173.
  • Touati-Ahmed, D. and Storey, C . (1990). Efficient Hybrid Conjugate Gradient Techniques, J. Optim. Theory Appl. , 64, 379-397.
  • Wolfe, P. (1969) . Convergence Conditions for Ascent Method. SIAM Rev. ,11,226-235.
  • Yuan, G and Wei, Z. (2009). New Line Search Methods for Unconstrained Optimization . J. Korean Stat. Soc. , 38, 29-39.
  • Yuan, Y. and Sun,W. (1999). Theory and Methods of optimization. Science Press of China,Beijing.
  • Zoutendijk, G. (1970). Nonlinear ProgrammingComputational Methods. In : Abadie J. (Ed. )Integer and nonlinear programming, 37-86. Received: November, 2009