CFP last date
22 April 2024
Reseach Article

Food Dyes are Inhibitors of Human Protein Tyrosine Phosphatases (PTP1B) Molecular Docking Studies

by Ismail Daoud, Mourad Mesmoudi, Said Ghalem
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 86 - Number 6
Year of Publication: 2014
Authors: Ismail Daoud, Mourad Mesmoudi, Said Ghalem
10.5120/14988-1983

Ismail Daoud, Mourad Mesmoudi, Said Ghalem . Food Dyes are Inhibitors of Human Protein Tyrosine Phosphatases (PTP1B) Molecular Docking Studies. International Journal of Computer Applications. 86, 6 ( January 2014), 11-18. DOI=10.5120/14988-1983

@article{ 10.5120/14988-1983,
author = { Ismail Daoud, Mourad Mesmoudi, Said Ghalem },
title = { Food Dyes are Inhibitors of Human Protein Tyrosine Phosphatases (PTP1B) Molecular Docking Studies },
journal = { International Journal of Computer Applications },
issue_date = { January 2014 },
volume = { 86 },
number = { 6 },
month = { January },
year = { 2014 },
issn = { 0975-8887 },
pages = { 11-18 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume86/number6/14988-1983/ },
doi = { 10.5120/14988-1983 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:03:29.643726+05:30
%A Ismail Daoud
%A Mourad Mesmoudi
%A Said Ghalem
%T Food Dyes are Inhibitors of Human Protein Tyrosine Phosphatases (PTP1B) Molecular Docking Studies
%J International Journal of Computer Applications
%@ 0975-8887
%V 86
%N 6
%P 11-18
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Protein Tyrosine Phosphatase 1B (PTP1B) is an enzyme that plays a critical role in down-regulating insulin signaling through dephosphorylation of the insulin receptor. Inhibitors of PTP1B showed increased insulin sensitivity and normalize plasma glucose level and thus are use full therapeutic agents for the treatment of diabetes. The aim of the current study is to identify PTP1B inhibitors by means of virtual screening with docking. Six food dyes molecules have been screened and based on energy MolDok scores and hydrogen bonding interactions. L5, L1 potential inhibitors were identified in cavity1 and 2 respectively.

References
  1. Zhan X. L, Wishart M. J. and Guan K. L. 2001. Nonreceptor tyrosine phosphatases in cellular signaling: regulation of mitogen-activated protein kinases. Chem. Rev; 101(8), 2477-96.
  2. Östman A. and Böhmer F. D. 2001. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends. Cell. Biol; 11(6), 258–66.
  3. Cohen P. 2000. The regulation of protein function by multisite phosphorylation—A 25 year update. Trends. Biochem. Sci ; 25(12), 596–601.
  4. Neel B. G. and Tonks N. K. 1997. Protein tyrosine phosphatases in signal transduction. Curr. Opin. Cell. Biol; 9(2), 193–204.
  5. Zhang Z. Y. 2002. Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor developmen. Annu. Rev. Pharmacol. Toxicol; 42(1), 209–243.
  6. Denu J. M. and Dixon J. E. 1998. Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Curr. Opin. Chem. Biol; 2(5), 633–641.
  7. Hunter T. and Sefton B. M. 1980. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl. Acad. Sci; 77(3), 1311–1315.
  8. Tonks N. K, Diltz C. D. and Fischer E. H. 1988. Purification of the major protein tyrosine-phosphatases of human placenta. J. Biol. Chem; 263(3), 6722–6730.
  9. Tonks N. K, Diltz C. D. and Fischer E. H. 1988. Characterization of the major protein tyrosine-phosphatases of human placenta. J. Biol. Chem; 263(14), 6731–6737.
  10. Blaskovich M. A. and Kim H. O. 2002. Recent discovery and development of protein tyrosine phosphatase inhibitors. Exp. Opin. Ther. Pat; 12(6), 871–905.
  11. Charbonneau H, Tonks N. K, Walsh K. A. and Fischer E. H. 1988. The leukocyte common antigen (CD45): a putative receptor-linked protein tyrosine phosphatase. Proc. Natl. Acad. Sci; 85(19 ), 7182–7186.
  12. Goldstein B. 1998. Tyrosine Phosphoprotein Phosphatases (2nd ed. )Oxford: Oxford University Press.
  13. Revankar S. M. and Lel, S. S. 2007. Synthetic dye decolorization by white rot fungus, Ganoderma sp. WR-1. Bioresour. Technol; 98(4), 775–780.
  14. Downham A. and Collins P. 2000. Coloring our foods in the last and next millennium. Int. J. Food. Sci. Technol ; 35(1), 5–22.
  15. Minioti S. K, Sakellariou F. C. and Thomaidis S. N. 2007. Determination of 13 synthetic food colorants in water-soluble foods by reversed-phase high performance liquid chromatography coupled with diode-array detector. Anal. Chim. Acta; 583(1), 103–110.
  16. Shrestha S, Shim Y. S. Kim K. C, Lee K. H. and Cho H. 2004. Evans Blue and other dyes as protein tyrosine phosphatase inhibitors. Bioorg. Med. Chem. Lett; 14(8), 1923-1926.
  17. Cho H, Lee D. Y, Shrestha S, Shim Y. S, Kim K. C, Kim M. K, Lee K. H, Won J. and Kang J. S. 2004. Aurintricarboxylic acid translocates across the plasma membrane, inhibits protein tyrosine phosphatase and prevents apoptosis in PC12 cells. Mol. Cells; 18(1), 46-52.
  18. Neel B. G. and Tonks N. K. 1997. Protein tyrosine phosphatases in signal transduction. Curr. Opin. Cell. Biol; 9(2), 193-204.
  19. Shrestha S, Bhattarai B. R, Lee K. H. and Cho H. 2006. Some of the Food Color Additives Are Potent Inhibitors of Human Protein Tyrosine Phosphatases. Bull. Korean. Chem. Soc; 27(10), 1567-1571.
  20. Stewart J. J. P. 2007. Optimization of parameters for semi-empirical methods V: modification of NDDO approximations and application to 70 elements. J. Mol. Model; 13(12), 1173-1183.
  21. Labanowski J. K. and Andzelm J. W. 1991. Editors. Density functional methods in chemistry. New York: Springer Verlag; p. 443.
  22. Baker J. 1986. An algorithm for the location of transition states. J. Comput. Chem; 7(4), 385-395.
  23. Schlegel H. B. 1994. editor. Modern electronic structure theory: geometry optimization on potential energy surfaces. Singapore: World Scientific.
  24. Hehre W. J, Radom L, Schleyer P. V. R. and Pople J. A. 1986. Ab initio molecular orbital theory. New York: Wiley.
  25. Hariharan P. C. and Pople J. A. 1973. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta; 28(3), 213-235.
  26. Becke AD. 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev A; 38(6), 3098-3100.
  27. Becke A. D. 1993. A new mixing of HartreeeFock and local density-functional theories. J. Chem. Phys; 98(3), 1372-1381.
  28. Lee C, Yang W. and Parr R. G. 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev B; 37(4),785-794.
  29. Frisch M. J, Trucks G. W, Schlegel H. B, Scuseria G. E, Robb M. A. and Cheeseman J. R, et al. 2004. Gaussian 03, Revision D. 01. Wallingford, CT: Gaussian, Inc.
  30. Groves M. R, Yao Z. J, Roller P. P, Burke J. T. R. and Barford D. 1998. Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics. Biochemistry; 37(51), 17773-17783.
  31. Berman H. M, Westbrook J, Feng Z, Gilliland G, Bhat T. N, Weissig H, Shindyalov I. N. and Bourne P. E. 2000. The Protein Data Bank. Nucleic. Acids. Res; 28(1), 235–242.
  32. da Cunha E. F. F, Martins R. C. A. and Albuquerque M. G. 2004. LIV-3D-QSAR model for estrogen receptor ligands. J. Mol. Mod; 10(5), 297–304.
  33. Elaine F. F, da Edilaine F. B, Aline A. O. and Teodorico C. R. 2010. Molecular modeling of Mycobacterium tuberculosis DNA gyrase and its molecular docking study with gatifloxacin inhibitors. J. Biom. Struct. Dyn; 27(5), 619–625.
  34. Ramalho T. C, Rocha M. V. J, da Cunha E. F. F. and Freitas M. P. 2009. The search for new COX-2 inhibitors. Expert. Opin. Ther. Pat; 19(9), 1193–1228.
  35. Thomsen R. and Christensen M. H. 2006. MolDock: a new technique for highaccuracy molecular docking. J. Med. Chem; 49(11), 3315-3321.
  36. Schulz H, Dale E, Karimi-Nejad Y. and Oefner C. 2009. Structure of human endothe-linonverting enzyme I complexed with phosphoramidon. J. Mol. Biol; 385(1), 178–187.
  37. Malamas M. S, Sredy J, Moxham C, Katz A, Xu W, McDevitt R, Adebayo F. O, Sawicki, D. R, Seestaller L, Sullivan D. and Taylor JR. 2000. J. Med. Chem; 43: 1293.
  38. Wallace, A. C. Laskowski, R. A. and Thornton, J. M. 1995. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein. Eng. , 8, 127–134.
Index Terms

Computer Science
Information Sciences

Keywords

Diabetes PTP1B Food dyes Interactions Molecular Docking.