CFP last date
22 April 2024
Reseach Article

Design of Rectangular Microstrip Patch Antenna by Improving the Performance Parameters with EBG Structures

by Gaurav Kumar Sharma, Narinder Sharma
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 95 - Number 17
Year of Publication: 2014
Authors: Gaurav Kumar Sharma, Narinder Sharma
10.5120/16689-6812

Gaurav Kumar Sharma, Narinder Sharma . Design of Rectangular Microstrip Patch Antenna by Improving the Performance Parameters with EBG Structures. International Journal of Computer Applications. 95, 17 ( June 2014), 33-36. DOI=10.5120/16689-6812

@article{ 10.5120/16689-6812,
author = { Gaurav Kumar Sharma, Narinder Sharma },
title = { Design of Rectangular Microstrip Patch Antenna by Improving the Performance Parameters with EBG Structures },
journal = { International Journal of Computer Applications },
issue_date = { June 2014 },
volume = { 95 },
number = { 17 },
month = { June },
year = { 2014 },
issn = { 0975-8887 },
pages = { 33-36 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume95/number17/16689-6812/ },
doi = { 10.5120/16689-6812 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:19:43.328256+05:30
%A Gaurav Kumar Sharma
%A Narinder Sharma
%T Design of Rectangular Microstrip Patch Antenna by Improving the Performance Parameters with EBG Structures
%J International Journal of Computer Applications
%@ 0975-8887
%V 95
%N 17
%P 33-36
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, the execution of rectangular patch antenna is mended applying a newly cylindrical electromagnetic band-gap (EBG) substrate. The microstrip patch antenna is fed in the driven terminal. This EBG structure, when constituted with microstrip patch antenna to radiation pattern and return loss got from menstruation appearance a better impedance matching and a gain enhancement of the directed antenna. The gain utilizing the designed structure has been found to be 5. 5123dB, which are merits for transmitting data over a retentive distance. Wideband antenna detects its applications in mobile sensors, data ingathering and tracking diligence.

References
  1. E. Yablonvitch, "Photonic band-gap structures," J. Opt. Soc. Amer. B, Opt. Physics, vol. 10, no. 2, pp. 283-295, Feb 1993.
  2. G. P. Gauthier, A. Courtay, and G. H. Rebeiz "Microstrip antennas.
  3. M. Khayat, J. T. Williams, D. R. Jakson, and S. A. Long, "Mutual coupling between reduced surface-wave microstrip antennas, IEEE Trans. Antennas Propag. , vol. 48, pp. 1581-1593, Oct. 2000.
  4. D. M. Kokotoff, R. B. Waterhouse, C. R. Britcher, and J. T. Aberle, "Anular ring coupled circular patch with enhanced performance", Electron. Letters, vol. 33, pp. 2000-2001, Nov. 1997.
  5. R. G. Rojas, and K. W. Lee, "Surface wave control using non periodic parasitic strips in printed antennas", IEE Pros. -Microw. Antennas Propag. , vol. 148, pp. 25-28, Feb. 2001
  6. A. K. Bhattacharayya, "Characteristics of space and surface-waves in a multilayered structure", IEEE Trans. Antennas Propag. , vol. 38, pp. 1231- 1238, Aug. 1990. .
  7. J. Joannopoulos, R. D. Meade and J. N. Winn, Photonic crystals: molding the ?ow of light, Princeton University Press, 1995M.
  8. R. Gonzalo, P. de Maagt, and M. Sorolla, "Enhanced path-antenna performance by supresing surface waves using photonic-bandgap substrates", IEEE Tran. Microw. Theo. Techn. , vol. 47, pp. 2131-2138, Nov. 1999.
  9. D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexopoulos, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band", IEEE Trans. Microwave Theory Techn. , vol. 47, pp. 2059-2074, Nov. 1999.
  10. Y. -J. Park, A. Herchlein, and W. Wiesbeck, "A Photonic Bandgap (PBG) structure for guiding and suppressing surface waves in millimeter-wave antennas", IEEE Trans. Antennas Propagat. , vol. 49, pp. 1854-1857, Oct. 2001.
  11. K. Agi, M. Mojahedi, B. Minhas, E. Schamilogu, and K. J. Malloy, "The effects of an electromagnetic crystal substrate on a microstrip patch antenna", IEEE Trans. Antennas Propag. , vol. 50, pp. 451-456, April 2002.
  12. F. Yang and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic bandgap (EBG) structures: a low mutual coupling design for array applications", IEEE Trans. Antennas Propag. , vol. 51, pp. 2936-2946, oct. 2003.
  13. N. Llombart, A. Neto, G. Gerini, and P. de Maagt, "Planar circularly symettric EBG structures for reducing surface waves in printed antennas", IEEE Trans. Antennas Propag. , vol. 53, pp. 3210-3218, Oct. 2005.
  14. A. Neto, N. Llombart, G. Gerini, and P. de Maagt, "On the optimal radiation bandwidth of printed slot antennas surrounded by EBGs", IEEE Trans. Antennas Propag. , vol. 543, pp. 1074-1083, Ap. 2006.
Index Terms

Computer Science
Information Sciences

Keywords

Microstrip patch antenna Gain Electromagnetic band gap structure