Atomic Scale Simulation of Dislocation Loops Formation in Thin Foil under High Energy Electron Irradiation

Print
International Journal of Computer Applications
© 2014 by IJCA Journal
Volume 96 - Number 10
Year of Publication: 2014
Authors:
E. Boucetta
A. Amghar
H. Idrissi-saba
A. M. Gué
D. Estève
M. Djafari-rouhani
10.5120/16828-6588

E Boucetta, A Amghar, H Idrissi-saba, A M Gue, D Esteve and M Djafari-rouhani. Article: Atomic Scale Simulation of Dislocation Loops Formation in Thin Foil under High Energy Electron Irradiation. International Journal of Computer Applications 96(10):13-19, June 2014. Full text available. BibTeX

@article{key:article,
	author = {E. Boucetta and A. Amghar and H. Idrissi-saba and A. M. Gue and D. Esteve and M. Djafari-rouhani},
	title = {Article: Atomic Scale Simulation of Dislocation Loops Formation in Thin Foil under High Energy Electron Irradiation},
	journal = {International Journal of Computer Applications},
	year = {2014},
	volume = {96},
	number = {10},
	pages = {13-19},
	month = {June},
	note = {Full text available}
}

Abstract

Using a personnel computer, we have simulated the diffusion and agglomeration of point defects in thin foil under high energy electron irradiation. The physical model has been developed by using the Monte Carlo technique. Four types of reactions are assumed to take place: di-interstitial creation by agglomeration of two free interstitials, vacancy-interstitial annihilation, interstitial trapping by dislocation loops and interstitial annihilation on the sample surfaces. In the simulation only interstitials are mobile and extended defects are assumed to be interstitial type. We have calculated the concentration of point defects, extended defects and the size of the latter. We compared them to the results of the Chemical Reaction Rate Theory (CRRT). It has been found that the dislocation loops are distributed in the center of material leaving areas denuded close to the surface and the loops radius is also strongly dependent on the location of the defect in thin foil with respect to the results of experimental and CRRT. To explain the origin of these phenomena we have exploited the spatial distribution of vacancies close to free surfaces and around dislocation loops. These types of informations are totally missing in the CRRT and experimental.

References

  • Gué, A. M. , Djafari-Rouhani, M. , and Estéve. 1991. Quantitative analysis of defect formation in cadmium telluride during high energy electron irradiation. Rad. Eff & Def. Solids. Radiation Effects and Defects in Solids. 116, 219 .
  • Gué, A. M. , Djafari-Rouhani, M. , Estéve, D. , and Idrissi-Saba,H. 1991. Sur l'origine des inhomogénéités de taille et de concentration des boucles de dislocation créées par irradiation électronique dans le CdTe. J. Phys. I. 1, 97.
  • Gué,A. M. , and Mazel, A . 1988. Etude expérimentale de la dynamique de croissance de défauts étendus, sous irradiation électronique à haute énergie, dans le tellurure de cadmium. J. Phys. France. 49, 53
  • Shimomura, Y,. 1969. Interstitial clusters observed below stage III annealing in electron irradiated pure gold. Philos. Mag. 160, 773
  • Yoshida, N,. and Kiritani, M. 1973. Point Defect Clusters in Electron-Irradiated Gold. Journal of the Physical Society of Japan . 35, 1418 .
  • Kiritani, M. , Yoshida, N. , Takata, H. , and Maehara, Y. 1975. Growth of Interstitial Type Dislocation Loops and Vacancy Mobility in Electron Irradiated Metals. J. Phys. Soc. Jpn . 38, 1677 .
  • Brown, L. M. , Kelly, A. , and Mayer, R. M. 1969. The influence of boron on the clustering of radiation damage in graphite. Philosophical Magazine. 19, 721.
  • Fu, C. C. , DallaTorre, J. , Willaime, F. , Bocquet, J. L. and Barbu, A. 2004. Multiscale modelling of defect kinetics in irradiated iron. Nature Materials. 4, 68 .
  • Bocquet ,J. L. , Doan, N. V,. and Martin, G. 2005. A new formulation of sink strengths under steady irradiation: recombination and interference effects. Phil. Mag. 85, 559.
  • Brown,L. M. 1969. On electron radiation damage in crystals. Philos. Mag . 19, 869 .
  • Zinkle, S . J. 2012. Effect of H and He irradiation on cavity formation and blistering in ceramics. Revue Phys. Appl . 15, 307.
  • Legros de Mauduit B, Alcouffe G and Reynaud F 1980 Irradiation électronique de l'antimoine: Montee des dislocations mixtes et determination de la nature des boucles de defauts ponctuels. Radiation Effects. 53,55-56.
  • Shigenaka, N. , Hashimoto, T. , and Fuse, M. 1994. Effect of specimen surface on dislocation loop nucleation under ion irradiation. Materials Transactions, JIM(Japan). 35, 7.
  • Xu ,W. , Zhang, Y. , Cheng, G. , Jian, W. , Millett, P. C. , Koch ,C. C. , Mathaudhu ,S . N. , and Zhu, Y. 2013. In-situ atomic-scale observation of irradiation-induced void formation. Nature communications. 4.
  • Yoshiie, T. ,Kojima,S,. and kiritani, M. 1994. Nucleation of Interstitial Type Dislocation Loops in Metals under Neutron Irradiation. Sci. Rep. RITU. 40, 77.
  • Yang, Z. , Sakaguchi, N. , Watanabe, S,. and Kawai, M,. 2011. Dislocation Loop Formation and Growth under In Situ Laser and/or Electron Irradiation. Scientific Reports 1, 190.
  • Urban, K. 1971. Growth of defect clusters in thin nickel foils during electron irradiation (I). physica status solidi (a). 4, 761
  • Bourret, A. 1970. L'agglomeration des defauts ponctuels dans les metaux irradies decrite par les equations de la cinetique chimique. Radiation Effects. 5, 27.
  • Dienes ,G. J. , and Vineyard, G. H . 1957. Rad. Effects . 2, 226 .
  • Damaskn,A. C,. and Dienes, G. J. 1963. Point Defects in Metals, Gordon and Breach, New York and London Chap. II
  • Djafari-Rouhani, M. , Idrissi-Saba, H. , and Gué,A. M. 1998. A tomic Scale Simulation of Point Defects Diffusion and Reactions Using Transputers. Jpn. J. Appl. Phys. 37, 2703.
  • Djafari-Rouhani, M. , Gué,A. M. , Idrissi-Saba,H. , and Estéve, D. 1994. Simulation à l'échelle atomique de la formation des boucles de dislocation sous irradiation. J. Phys. I France. 4, 453.
  • Amghar, A. , Djafari-Rouhani, M. , Idrissi-Saba,H. , Gué,A. M, and Estéve, D. 2001. Simulation à l'Échelle atomique des Phénomènes de Diffusion et d'Agglomération des défauts Ponctuels Sous Irradiation: Création et Croissance des Boucles de Dislocation. Physica B. 304, 368.
  • Amghar, A. , Idrissi-Saba, H. , Saba, A. , Djafari-Rouhani, M. , Gué, A. M, and Estève, D. 2001. Atomic scale simulation of extended defects formation under high energy electron irradiation: space distributionn. Physica. Scripta. 64, 75.
  • Boucetta, E. , Amghar, A. , and Idrissi-saba, H. 2013. Atomic Scale Simulation of Extended Defects Formation in Irradiated Materials Containing Impurities and Pre-existing Dislocations Journal of Chemical, Biological and Physical Sciences. 3, 2865