Abstract

This paper describes the problem of offline autonomous mobile robot path planning, which consists of generating optimal paths or trajectories for an autonomous mobile robot from a starting point to a destination across a flat map of a terrain, represented by a 2-D workspace. An improved algorithm for solving the problem of path planning using Artificial Bee Colony algorithm is presented. This nature-inspired metaheuristic algorithm, which imitates the foraging behavior of bees around their hive, is used to find the optimal path from a starting point to a target point. The proposed algorithm is demonstrated by simulations in three different environments. A comparative study is evaluated between the developed algorithm, the original ABC and other two state-of-the-art algorithms. This study shows that the proposed method is effective and gets trajectories with satisfactory results.

References

- C. A. Floudas, “Deterministic Global Optimization: Theory, Methods and
- C. A. Sierakowski and L. S. Coelho, Study of Two Swarm Intelligence Techniques for Path Planning of Mobile Robots, 16th IFAC World Congress, Prague, July 4-8, 2005.
- L. S. Coelho and C. A. Sierakowski, Bacteria Colony Approaches with Variable Velocity Applied to Path Optimization of Mobile Robots, 18th International Congress of
Index Terms

Computer Science

Algorithms

Keywords

Autonomous robots Holonomic robot Path planning Optimization methods
Artificial bee colony algorithm