Abstract

This paper describes the problem of offline autonomous mobile robot path planning, which is consist of generating optimal paths or trajectories for an autonomous mobile robot from a starting point to a destination across a flat map of a terrain, represented by a 2-D workspace. An improved algorithm for solving the problem of path planning using Artificial Bee Colony algorithm is presented. This nature-inspired metaheuristic algorithm, which imitates the foraging behavior of bees around their hive, is used to find the optimal path from a starting point to a target point. The proposed algorithm is demonstrated by simulations in three different environments. A comparative study is evaluated between the developed algorithm, the original ABC and other two state-of-the-art algorithms. This study shows that the proposed method is effective and gets trajectories with satisfactory results.
- C. A. Sierakowski and L. S. Coelho, "Study of Two Swarm Intelligence Techniques for Path Planning of Mobile Robots," 16th IFAC World Congress, Prague, July 4-8, 2005.
- L. S. Coelho and C. A. Sierakowski, "Bacteria Colony Approaches with Variable Velocity Applied to Path Optimization of Mobile Robots," 18th International Congress of
Mechanical Engineering, Ouro Preto, MG, Brazil, November 6-11, 2005.

Index Terms

Computer Science
Algorithms

Keywords

Autonomous robots
Holonomic robot
Path planning
Optimization methods
Artificial bee colony algorithm