Abstract

Image processing supports applications in different fields such as medicine, astronomy, product quality, industrial applications. Edge detection plays important role in segmentation and object identification process. Soft computing approach represents a good mathematical framework to deal with uncertainty of information. The performance of the well-known edge detectors, like Canny, Sobel, etc, depends critically on the choice of the input parameters. Threshold decision is the key uncertainty in the edge detection algorithms. In this paper, an improved edge detection algorithm based on fuzzy combination of mathematical morphology and multiscale wavelet transform is proposed. The proposed method overcomes the limitation of wavelet based edge detection and mathematical morphology based edge detection in noisy images. Method present will give best results for noisy images.

References

- Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins, DIGITAL IMAGE PROCESSING, published by Pearson Education (Singapore) Pvt. Ltd
- Dr. H. B. Kekre and Ms. Saylee M. Gharge, "Image Segmentation using
- Gao Qinqing, Chen Dexi, Zeng Guangping and He Ketai* "Image Enhancement Technique Based On Improved PSO Algorithm," 978-1-4244-8756-1/11/$26.00 © 2011 IEEE
- E. Brannock, M. Weeks, "Edge detection using wavelets," ACM SE, March,
Comparison of Traditional Approach for Edge Detection with Soft Computing Approach

2006.
- Dhirajkumar Patel and S A More "Edge Detection Technique by Fuzzy Logic and Cellular Learning Automata using Fuzzy Image Processing;" 978-1-4673-2907-1/13/$31. 00 ©2013 IEEE
- Li Fang, Weiren Shi, Shuhan Chen, "Fuzzy reasoning-based edge detection
Comparison of Traditional Approach for Edge Detection with Soft Computing Approach

method using multiple features"; WSEAS TRANSACTIONS on COMPUTERS E-ISSN: 2224-2872 Issue 11, Volume 11, November 2012

Index Terms

Computer Science

Image Processing

Keywords

Edge detection Wavelet transform Mathematical morphology Fuzzy logic