Abstract

Railways are large infrastructures and are the prime mode of transportation in many countries. The railways have become a prime means of transportation owing to their capacity, speed, and reliability. Even a small improvement in performance of railways has significant economic benefits to rail industry. Thus, a proper maintenance strategy is required to govern optimization of inspection frequency and/or improvement in skill and efficiency. Accidents happening due to track breaking have been a big problem for railways for life security and timely management of services. This breakage needs to be identified in real time before a train actually comes near to the broken track and get subjected to an accident. In this paper, different kinds of rail defects inspection and maintenance methods are described and a basic algorithm is readdressed that makes use of wireless acoustic sensors for detecting cracks and breakages in the railway
tracks.

References

- D. Hesse "Rail inspection using ultrasonic surface waves"; Thesis, Imperial College of London, 2007
- C. Campos-Castellanos, Y. Gharaibeh, P. Mudge *, V. Kappatos; The application of long range ultrasonic testing (LRUT) For examination of hard to access areas on railway tracks; IEEE Railway Condition Monitoring and Non-Destructive Testing (RCM 2011) Nov 2011.
- M. Singh, S. Singh1, J. Jaiswal; Autonomus rail track inspection using vision based system; IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety. October 2006. pp 56-59
- W. Al-Nuaimy, A. Eriksen and J. Gasgoyne; Train-mounted gpr for high-speed rail trackbed inspection; Tenth International Conference on Ground Penetrating Radal; 21-24 June, 2004
- Z. Sam Daliri1, S. Shamshirband, M. A. Besheli; Railway security through the use of wireless sensor networks based on fuzzy logic; International Journal of the Physical Sciences Vol. 6(3), pp. 448-458, 4 February, 2011

Index Terms

Computer Science

Security

Keywords

Cracks detection railway security acoustic sensor