Abstract

In distributed database query optimization, query optimizers have traditionally relied upon
statically estimated table cardinalities when evaluating the cost of the query plans. This paper
analyses static vs. dynamic calculation for selectivity of intermediate relations generated in
query processing. The objective of this research is to overcome the disadvantages of
previously formulated static methods which are relatively inaccurate in a distributed database
environment. A Dynamic selectivity evaluation tool (DSET) has been proposed to optimize cost
for a distributed database query processing environment. The results have shown that dynamic
evaluation of selectivity factor of sub query operation is feasible and can significantly reduced
the total query cost than its static estimation.

References

- M. Tamer ozsu, Patric Valduriez "Principles of Distributed Database
- Stratis D. Viglas, Jeffrey F. Naughton "Rate-Based Query Optimization for
Static vs Dynamic Techniques for Selectivity Evaluation in Distributed Query Optimization

- Faiza Najjar and Yahya slimani" Cardinality estimation of distributed join queries"; 2002.
- Fan Yuanyuan, Mi Xifeng" Distributed database System Query Optimization Algorithm Research"; IEEE, 2010.
- Manik Sharma and Dr. Gurdev Singh, "Analysis of Static and Dynamic Metrics for productivity and Time Complexity"; IJCA, 2011.

Index Terms

Computer Science Distributed Systems

Keywords

- Distributed database query optimization cardinality database statistics selectivity factor
- static Model
- DSET etc