Abstract

Does K-Means reasonably divides the data into k groups is an important question that arises when one works on Image Segmentation? Which color space one should choose and how to ascertain that the k we determine is valid? The purpose of this study was to explore the answers to aforementioned questions. We perform K-Means on a number of 2-cluster, 3-cluster and k-cluster color images (k>3) in RGB and L*a*b* feature space. Ground truth (GT) images have been used to accomplish validation task. Silhouette analysis supports the peaks for given k-cluster image. Model accuracy in RGB space falls between 30% and 55% while in L*a*b* color space it ranges from 30% to 65%. Though few images used, but experimentation proves that K-Means significantly segment images much better in L*a*b* color space as compared to RGB feature space.

References

K-Means Cluster Analysis for Image Segmentation

- C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, New York, 1996.
- L. Lucchese and S. K. Mitra, "Unsupervised segmentation of color images based
K-Means Cluster Analysis for Image Segmentation

on K-Means clustering in the chromaticity plane; Proc. of Content-based access of image and video libraries, pp. 74-78, 1999.
- Chi Zhang, P. Wang, A New Method of Color Image Segmentation Based on Intensity and Hue Clustering, volume 3 2002.
- http://www. wisdom. weizmann. ac. il/~vision/Seg_Evaluation_DB/index. html

Index Terms

Computer Science
Image Processing
Keywords
Cluster evaluation L*a*b* Color Space Precision Recall Graph Image Segmentation