CFP last date
21 October 2024
Reseach Article

An Efficient and Automatic Systolic Peak Detection Algorithm for Photoplethysmographic Signals

by Srinivas Kuntamalla, L. Ram Gopal Reddy
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 97 - Number 19
Year of Publication: 2014
Authors: Srinivas Kuntamalla, L. Ram Gopal Reddy
10.5120/17115-7686

Srinivas Kuntamalla, L. Ram Gopal Reddy . An Efficient and Automatic Systolic Peak Detection Algorithm for Photoplethysmographic Signals. International Journal of Computer Applications. 97, 19 ( July 2014), 18-23. DOI=10.5120/17115-7686

@article{ 10.5120/17115-7686,
author = { Srinivas Kuntamalla, L. Ram Gopal Reddy },
title = { An Efficient and Automatic Systolic Peak Detection Algorithm for Photoplethysmographic Signals },
journal = { International Journal of Computer Applications },
issue_date = { July 2014 },
volume = { 97 },
number = { 19 },
month = { July },
year = { 2014 },
issn = { 0975-8887 },
pages = { 18-23 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume97/number19/17115-7686/ },
doi = { 10.5120/17115-7686 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:24:32.962323+05:30
%A Srinivas Kuntamalla
%A L. Ram Gopal Reddy
%T An Efficient and Automatic Systolic Peak Detection Algorithm for Photoplethysmographic Signals
%J International Journal of Computer Applications
%@ 0975-8887
%V 97
%N 19
%P 18-23
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Processing of physiological signals often involves detection of peaks and finding intervals between them. Well developed methods are available for Electrocardiogram(ECG) QRS complex detection. However, there are only a few algorithms published for peak detection suitable for pulse wave signals such as arterial pressure wave and photoplethysmographic (PPG) signals. Algorithms for detection of QRS complex in ECG are based on the impulsive character of the signal and are not applicable for pulse wave signals, which are more sinusoidal in nature and the shape varies with age. In this background, a versatile algorithm based on the physiology of the pulse wave is developed to detect the peaks from a pulse wave signal such as PPG. The algorithm combines the technique of moving average of valley-peak differences with an adaptive threshold filtering to detect the systolic peaks. The algorithm is validated against a publicly available validation dataset and achieved a sensitivity of 99. 82 and a positive predictivity of 98. 88 when compared to expert manual annotations. This algorithm is computationally simple and can be easily implemented in real time processing hardware.

References
  1. Köhler, B. -U. , Henning, C. , and Orglmeister, R. 2002. The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. , 21(1), 42–57.
  2. Aboy, M. , McNames, J. , Thong,T. , Tsunami, D. , Ellenby, M. S. , Goldstein, B. 2005. An automatic beat detection algorithm for pressure signals. IEEE Trans. on Biomed. Eng. , 52 (10), 1662-1670.
  3. Treo, E. F. , Herrera, M. C. , Valentinuzzi, M. E. 2005. Algorithm for identifying and separating beats from arterial pulse records. Biomedical Engineering online, 4, 48.
  4. Shin, H. S. , Lee, C. , Lee, M. 2009. Adaptive threshold method for the peak detection of photoplethysmographic waveform. Comp. in Biol. Med. , 39, 1145-1152.
  5. Nenova, B. , Iliev, I. 2010. An automated algorithm for fast pulse wave detection. Int. J. BIOautomation, 14(3), 203-216.
  6. Caiani, E. G. , Turiel, M. , Muzzupappa, S. , Porta, A. , Baselli, G. , Cerutti, S. , Malliani, A. 2000. Evaluation of respiratory influences on left ventricular function parameters extracted from echocardiographic acoustic quantification. Physiol. Meas. , 21, 175–186.
  7. Rienzo, M. D. , Castiglioni, P. , Mancia, G. , Pedotti, A. , Parati, G. 2001. Advances in estimating baroreflex function. IEEE Eng. Med. Biol. Mag. , 20( 2), 25–32.
  8. Caiani, E. G. , Turiel, M. , Muzzupappa, S. , Porta, A. , Colombo, L. P. , Baselli, G. 2002. Noninvasive quantification of respiratory modulation on left ventricular size and stroke volume. Physiol. Meas. , 23, 567–580.
  9. Hlimonenko, I. , Meigas, K. , Vahisalu, R. 2003. Waveform analysis of peripheral pulse wave detected in the fingertip with photoplethysmograph. Measurement Science Review, 3(2), 49-52.
  10. Erts, R. , Spigulis, J. , Kukulis, I. , Ozols, M. 2005. Bilateral photoplethysmography studies of leg arterial stenosis. Physiol. Meas. , 26, 865-874.
  11. Constant, I. , Laude, D. , Murat, I. , Elghozi, J. L. 1999. Pulse rate variability is not a surrogate for heart rate variability. Clinical Science, 97, 391-397.
  12. Srinivas, K. , Ram Gopal Reddy, L. , Srinivas, R. 2007. Estimation of heart rate variability from peripheral pulse wave using PPG sensor. IFMBE Proceedings, 15,327-328.
  13. Lu, S. , Zhao, H. , Ju, K. , Shin, K. , Lee, M. , Shelly, K. , Chon, K. H. 2008. Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information?. Journal of clinical monitoring and computing, 22, 23-29.
  14. Gesche, H. , Grosskurth, D. , Küchler, G. , Patzak, A. 2012. Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff based method. Eur. J Appl. Physiol. , 112(1), 309-315.
  15. John Allen. 2007. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. , 28, R1-R39.
  16. Foo, J. Y. A. , Wilson S. J. , Williams, G. , Harris, M. A. , Cooper, D. 2005. Pulse transit time as a derived non invasive mean to monitor arterial distensibility changes in children. Journal of Human Hypertension, 19, 723-729.
  17. Wang, C. H. , Lu, C. W. , Lin T. Y. , Abbod, M. F. , Shieh, J. S. 2012. An assessment of pulse transit time for detecting heavy blood loss during surgical operation. Open Biomed. Eng. J, 6, 104-111.
  18. Zahedi, E. , Chellapan, K. , Ali, M. A. , Singh, H. 2007. Analysis of the effect of ageing on the rising edge characteristics of the plethysmogram using a modified windkessel model. Cardiovasc. Eng. , 7, 172-181.
Index Terms

Computer Science
Information Sciences

Keywords

Peak detection algorithm Systolic peaks Photoplethysmographic signal (PPG) Pulse oximetry Pulse transit time Heart rate variability.