Prediction and Analysis of Injury Severity in Traffic System using Data Mining Techniques

IJCA Proceedings on National Conference on Advances in Computing Communication and Application

© 2015 by IJCA Journal

ACCA 2015 - Number 2

Year of Publication: 2015

Authors:
Dheeraj Khera
Williamjeet Singh

Abstract

Road traffic is an essential part to life, but the repeated road accidents bring severe bodily harm and loss of property. Road Traffic Accidents (RTAs) are considered as major public health concern, resulting in 1.2 million deaths and 50 million injuries worldwide each year as per estimation. The want of study is to scrutinize the performance of different taxonomy methods using WEKA and TANAGRA tool on Traffic Injury Severity Dataset. This paper presents results comparison of three supervised data mining algorithms using various performance criteria. The performance is evaluated by the algorithms Naive bayes, ID3 and Random tree. Comparison of Performance of data mining algorithm based on Error rate, Computing time, precision value and
Prediction and Analysis of Injury Severity in Traffic System using Data Mining Techniques

accuracy. The comparison of the model using WEKA experimenter showed that Naive Bayes outperforms Random tree and ID3 algorithms with an accuracy of 50.7%, 45.07 and 25.35% respectively and comparison of the model using TANAGRA experimenter showed that Random tree outperforms Naive Bayes and ID3 algorithms with an accuracy of 92.95%, 67.6% and 57.74% respectively. In the end, we have to conclude that TANAGRA tool is the best data mining tools as compare to the WEKA.

References

- Chaozhong et al., "Severity Analyses of Single-Vehicle Crashes Based on Rough Set Theory"; 2009 International Conference on Computational Intelligence and Natural Computing.
- Elma kolce (cela), Neki Frasheri; A Literature Review of Data Mining Techniques used in Healthcare Databases; ICT Innovations 2012 Web Proceedings -Poster Session.
- Han, Jiawei and Kamber, Micheline. (2006). Data Mining: concepts and Techniques. San Francisico; Morgan kufman Publishers
- Liping et al., "Traffic Incident Duration Prediction Based on Artificial Neural Network"; 2010 International Conference on Intelligent Computation Technology and Automation.
- S. Shanthi, R. Geetha Ramani; Feature Relevance Analysis and Classification of Road Traffic Accident Data through Data Mining Techniques; Proceedings of the World Congress on Engineering and Computer Science 2012 Vol. I WCECS 2012, October 24-26, 2012, San Francisco, USA
- Tibebe Shah, Shawndra Hill (2013), "Mining Road Traffic Accident Data to Improve Safety: Role of Road-related Factors on Accident Severity in Ethiopia";
- Tanagra – a Free Data Mining Software for Teaching and Research, Available at:

Index Terms

Computer Science

Information Sciences

Keywords

Road Traffic Accidents Data Mining Naive Bayes Id3 Random Tree Weka Tanagra

Accuracy Measure