Abstract

In today’s world in order to meet the increasing demand – supply gap, we need to transform the way energy is produced, delivered and consumed across all regions of the world. Energy efficiency gives a promising future to all viz. savings for consumers and utilities, improvements in industrial productivity, intensified international competitiveness and reduced environmental impacts. Energy Efficient motors (EEM) are truly premium motors. The efficiency gains are obtained through the use of refined design, better materials, and improved construction. In this paper a case study of several rice mills have been taken. The load for the various rice mills have been taken into account. The parameters associated with already
installed induction motors have been noted for efficiency and cost saving calculations. A proposal have been made to replace standard induction motors with EEM.

References

- A. Zabardast, and H. Mokhtari “Effect of High-Efficient Electric Motors on Efficiency Improvement and Electric Energy Saving”;
- M. Benhaddadi, F. Landry, R. Houde, and G. Olivier “ENERGY EFFICIENCY ELECTRIC PREMIUM MOTOR-DRIVEN SYSTEMS”;
- Abraham Varughese “ENERGY EFFICIENCY IN ELECTRICAL MOTORS”;
- Austin H. Bonnett “Reliability Comparison Between Standard and Energy Efficient Motors”;
- Johan C. Andreas “Energy Efficient Electric Motors”;
- Gilbert A. McCoy et al, Bonneville Power Administration. An Introduction to Electrical Machines and Transformers, George McPherson, John Wiley and Sons.

Index Terms

Computer Science
Power Systems

Keywords