Abstract

Solar energy is clean and renewable source of energy and its decentralized property is appropriate well at the scattered state of the zones with low density of population. The cost of electricity from the solar array system is comparatively more than the electricity from the utility grid. Therefore, it make sense to operate the PV system at maximum efficiency by maximum power point tracking (MPPT) at any given environmental condition. In this work, the neural
Maximum Power Point Tracking of Solar Photovoltaic system using Artificial Neural Networks

Network (NN) back propagation algorithm is used to control the operation of the PV array for maximum power point extraction. Two error functions are used. The first is classical error function and the second is a modified error function which takes into consideration the derivative of the error function also. The results obtained are compared and discussed in the current study.

References

- Shireen, W and Arefeen, M. S. 1996. An utility interactive power electronics interface for alternate/renewable energy systems.
- Tsai, M. and Tsai, W. I. 1999, Analysis and design of three-phase AC-to-DC converters with high power factor and near-optimum feed forward.

Index Terms

Computer Science
Circuits And Systems

Keywords
Neural Network
Mppt Technique
Solar Photovoltaic System