Abstract

A Fractional Order (FO) Proportional- Integral- Derivative (PID) controller has been proposed in this paper which works on the closed loop error and its fractional derivative and fractional integrator. FOPID is a PID controller whose derivative and integral orders are of fractional rather than integer. The extension of derivative and integral order from integer to fractional order provides more flexibility in design of the controller, thereby controlling wide range of dynamics of a system. Frequency domain specifications are used as the performance criteria to be optimizing the FOPID controller parameters: Proportional (Kp), Integral (Ki), Derivative (Kd) gains, integral order (\(\alpha\)), and the derivative order (\(\beta\)).
- J. G. Zeigler and N. B. Nichols, "Optimum setting for automatic controller", ASME Trans., pp. 759-768, 1942
- M. Saad A. Albagul , D. Obiad, "Modeling and Control Design of Continuous Stirred Tank Reactor System", Advances in Automatic Control, Modelling & Simulation
- Podlubny,l. : "Fractional – order Systems and fractional order controllers.
- Inst. Exp. Phys. Slovak Academy of Science N-1UEF-03-94,Kosice
- YangQuan Chen , Ivo Petras and Dingyu Xue , "Fractional order Control – A Tutorial", American Control Conference, June 10-12, 2009, pp. 1397-1411
- B. Vinagre, L. Podlubny, L Dorcak and V. Feliu, "On fractional PID controllers: A frequency domain approach", IFAC workshop on digital control. Past, present and future of PID control, pp. 53–58, Terrasa, Spain, 200
- Mohd Fuaad Rahmat, Amir Mehdi Yazdani, Mohammad Ahmadi Movahed and Somaiyeh Mahmoudzadeh, "Temperature control of continuous stirred tank reactor by means of two different Intelligent Strategies"; IJSSIS, Vol. 4

Index Terms

Computer Science
Electrical And Instrumentation Engineering

Keywords
Fractional Order Controller Cstr Process Tuning Zn Method Astrom Method