Abstract

The power system network is becoming more complex nowadays so maintaining the stability of the power system is very difficult. So we have designed a 12-pulse based Static Synchronous Series Compensator (SSSC) which is operated with and without integration of Superconducting Magnetic Energy Storage (SMES) for enhancing the voltage stability and power oscillation damping in multi area system. Control scheme for the chopper circuit of SMES coil is designed. The model of power system is designed in MATLAB / SIMULINK environment and tested for
various conditions. Model is tested SSSC with and without SMES is analyzed for various
transient disturbances.

References

- Thangavel M., and Jasmine S. S., "Enhancement of Voltage Stability and Power
 Oscillation Damping Using Static Synchronous Series Compensator With SMES",
 94-98.
 Improvement by FACTS Devices: A Comparison between SSSC and STATCOM",
- Vamsee R. M., Bankarm D. S., Sailor J., "Superconducting Magnetic Energy
 Storage",
 National Conference on Recent Advances in Electrical Engineering and
- Wen J, Jian X. J., You G. G, Jian G. Z., "Theory and Application of
 Superconducting Magnetic Energy Storage",
 Australasian Universities Power Engineering
 Conference, 2006, pp 7-12.
- Hingorani, N. G., "Role of FACTS in a Deregulated Market",
- Molina, M. G. and P. E. Mercado, "New Energy Storage Devices for Applications
 on Frequency Control of the Power System using FACTS Controllers",
- Molina, M. G. and Mercado P. E., "Modeling of a Static Synchronous
 Compensator with Superconducting Magnetic Energy Storage for Applications on Frequency
 Control",
- Gyugyi I., Schauder C. D., "Kalyar K. S., Static Synchronous Series
 Compensator: A Solid approach to the series compensation of transmission line",
- Choi S. S., Jiang F. and Shrestha G., "Suppression of transmission system
 oscillations by thyristor controlled series compensation",

Index Terms

Computer Science

Circuits And Systems
Keywords

Static Synchronous Series Compensator (sssc) Superconducting Magnetic Energy Device (smes)