Abstract

Fused Deposition modelling (FDM) technology is based on decomposition of 3-D computer models into thin cross sectional layers, followed by physically forming the layer and stacking them up layer by layer. FDM provide freedom to add material in the desired area and we are also able to create hollow region in certain portion of layer. In this way low weight with good strength single ply raw material with hollow cross section is produced. Void spaces were
created in single ply raw material. FEM analysis was applied to select the material. Results of FEM analysis shows that ABS material is better compressive as comparison to Nylon101, Nylon6/10. So ABS material is selected for manufacturing of specimens. ABS specimens were manufactured with the help of FDM. Compressive test of specimens at 8000N shows that two small square structures give optimum results for ABS material

References

- Haiou Zhang, Xinhong Xiong and Guilan Wang (2009): Metal direct prototyping by using hybridplasma deposition and milling, journal of materials processing technology 124–130
- Kanzaki, Bassoli, Iuliano, L. and Violante, MG (2007): Engineering plastics and metals have been extensively replaced by polypropylene, Rapid prototyping journal, Vol 13, No. 3, pp. 148-155
- Gatto and Harris, Russel Anthony (2010): Nondestructive analysis of external and
Analysis and Optimization of Void Spaces in Single Ply Raw Material using Finite Element Method & Fused Deposition Modelling

internal structures in 3DP, Rapid Prototyping journal ,Vol. 17 ,No. 2, pp. 128-137
- . Bourell, D. L, Leu ,M. C. and Rosen ,D. W. (2009), Road map for additive manufacturing identifying the future of freeform processing , University of Texas at Austin
- . Agarwal, M. K. , Jamalabad, V. R. , Langrana, N. A., Safari, A., Whalen, P. J. , and

Index Terms

Computer Science
Circuits And Systems

Keywords

Stl - Standard Triangulation Language
Fem - Finite Element Method
Abs - acrylonitrile
Butadiene Styrene
Fdm - Fused Deposition
Modelling