Abstract

The IC technology always aims at increasing the package density and the speed. The VLSI technology which is governed by MOSFETs for the past couple of decades. In an attempt to increase the package density the size of the MOSFETS has been scaled down. As the size of the MOSFETs is scaled downwards, sub-threshold leakage current and leakage power in the ICs is increasing. The continued scaling has reached stagnation and further miniaturization of the MOSFET is facing major challenges. The conventional MOSFETs at short channel lengths suffer from high OFF-state leakage currents. They also suffer from numerous other short channel effects. Hence, as an alternative to the MOSFETs, TFETs have been widely studied. TFETs have the asymmetrical source/drain doping profile and they operate as reverse-biased,
gated p-i-n tunnel diodes. The on-off switching mechanism in TFETs can be achieved by the
gate-voltage induced band-to-band tunneling (BTBT) at the source-channel tunnel junction only.
Whereas in conventional MOSFETs, only the carriers with energy exceeding the
source-channel thermal barrier will contribute the on-state current. TFETs are promising
candidates for low power CMOS applications. Modelling the effects of non-idealities on the
drain current of a TFET is also an important aspect. High on-state current (I\text{on}), high on-off
ratio and steep SS are the critical aspects in TFET design. In this paper the silvaco TCAD
simulation results for both conventional MOSFET & SOI Tunnel field effect transistor and its
structure are shown.

References

- Ch. Pavan Kumar, K. Sivani, "A Tunnel Field Effect transistor is a substitute for ultra-low power power applications" International Conference on Advances in Human machine Interaction (IEEE HMI 2016), March 3-5, 2016 ISBN Number : 978-1-4673-8810-8. DOI: 10. 1109/HMI. 2016. 7449164.
- Ch. Pavan Kumar, Dr. K. Sivani, "A Comparative Approach between Conventional MOSFET and Tunnel Field Effect Transistors (TFET)" ; International Journal Of Core Engineering & Management (IJCEM), Special issue ICCEMT-2015(Dec-15), page no. 326-335, ISSN: 2348 9510.
- Verhulst AS, Leonelli D, Rooyackers R, Groeseneken G. Drain voltage dependent
- D. K. Mohata et al, "Demonstration of improved hetero epitaxy, scaled gate stack and reduced interface states enabling heterojunction Tunnel FETs with high drive current and high on-off ratio," IEEE Symp. On VLSI Technology (VLSIT), pp. 53–54, Jun 2012.
- R. Bijesh et al, "Demonstration of In0. 9Ga0. 1As/GaAs0. 18Sb0. 82 near broken-gap tunnel FET with ION=740?A/?m, GM=700?S/?m and Gigahertz Switching Performance at VDS=0. 5V", IEDM Tech. Digest , pp. 28.2.1–28.2.4, Dec. 2013.

Index Terms

Computer Science

Power System

Keywords
Band-to-band Tunnelling Inversion Mode Subthreshold Swing Ultra-low Power Design