Abstract

The IC technology always aims at increasing the package density and the speed. The VLSI technology which is governed by MOSFETs for the past couple of decades. In an attempt to increase the package density the size of the MOSFETS has been scaled down. As the size of the MOSFETs is scaled downwards, sub-threshold leakage current and leakage power in the ICs is increasing. The continued scaling has reached stagnation and further miniaturization of the MOSFET is facing major challenges. The conventional MOSFETs at short channel lengths suffer from high OFF-state leakage currents. They also suffer from numerous other short channel effects. Hence, as an alternative to the MOSFETs, TFETs have been widely studied. TFETs have the asymmetrical source/drain doping profile and they operate as reverse-biased,
gated p-i-n tunnel diodes. The on-off switching mechanism in TFETs can be achieved by the
gate-voltage induced band-to-band tunneling (BTBT) at the source-channel tunnel junction only.
Whereas in conventional MOSFETs, only the carriers with energy exceeding the
source-channel thermal barrier will contribute the on-state current. TFETs are promising
candidates for low power CMOS applications. Modelling the effects of non-idealities on the
drain current of a TFET is also an important aspect. High on-state current (I_{on}), high on-off
ratio and steep SS are the critical aspects in TFET design. In this paper the silvaco TCAD
simulation results for both conventional MOSFET & SOI Tunnel field effect transistor and its
structure are shown.

References

- Seabaugh AC, Zhang Q. Low-voltage tunnel transistors for beyond CMOS logic. Proc
- Ch. Pavan Kumar, K. Sivani, "A Tunnel Field Effect transistor is a substitute for
 ultra-low power applications" International Conference on Advances in Human machine
 1109/HMI.2016.7449164.
- Claey C. Trends and challenges in micro- and nano electronics for the next decade.
- Ch. Pavan Kumar, Dr. K. Sivani, "Analyzing the impact of TFETs for ultra-low
 power design applications. " International Conference on Electrical, Electronics, and
 Optimization Techniques (IEEE-ICEEOT), March 3-5, 2016. International Conference on
 Electrical, Electronics, and Optimization Techniques (ICEEOT) – 2016. ISBN Number:
 978-1-4673-9939-5. DOI: 10. 1109/ICEEOT. 2016. 7754753.
- Ionesco AM, Riel H. Tunnel field-effect transistors as energy-efficient electronic
- Ch. Pavan Kumar, Dr. K. Sivani, "A Comparative Approach between
 Conventional MOSFET and Tunnel Field Effect Transistors (TFETs)" International
 Journal Of Core Engineering & Management (IJCEM), Special issue ICCEMT-2015(Dec-15),
 page no. 326-335, ISSN: 2348 9510.
 Temperature impact on the tunnel FET off-state current components. Solid-State Electron
- De Michielis L, Lattanzio L, Moselund KE, Riel H, Ionescu AM. Tunnelling and
 occupancy probabilities: how do they affect Tunnel-FET behaviour? IEEE Electron Dev Lett
- Narang R, Saxena M, Gupta RS, Gupta M. Drain current model for a gate all around
 mejo.2013.04.00.
- García Bardon M, Neves HP, Puers R, Van Hoof C. Pseudo-two-dimensional model for
double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans Electron Dev
- Verhulst AS, Leonelli D, Rooyackers R, Groeseneken G. Drain voltage dependent

- R. Bijesh et al, "Demonstration of In0. 9Ga0. 1As/GaAs0. 18Sb0. 82 near broken-gap tunnel FET with ION=740?A/?m, GM=700?S/?m and Gigahertz Switching Performance at VDS=0. 5V", IEDM Tech. Digest., pp. 28. 2. 1–28. 2. 4, Dec. 2013.

Index Terms

Computer Science

Power System

Keywords

Band-to-band Tunnelling Inversion Mode Subthreshold Swing Ultra-low Power Design