Abstract

This paper presents the design of Multilayer parasitic MSA Array concerned on enhancement of gain at 5.8 GHz for WiMax application. Micro strip patch antenna array is designed by using different substrates. First layer element is made of FR4 substrate while other layers are of different substrates. The antenna provides better gain after adding the patch elements.

Array concerned on enhancement of gain at 5.8 GHz for WiMax application. Micro strip patch antenna array is designed by using different substrates. First layer element is made of FR4 substrate while other
Design of Multilayer Micro Strip Antenna Array for Fixed WiMax Application

layers are of different substrates. The antenna provides better gain after adding the patch elements.

Referenc

ences

- D. Bhardwaj, D. Bhatnagar, S. Sancheti, B. Soni; Design of Square Patch Antenna with a Notch On FR4 Substrate; in Proc. Asia Pacific Microwave Conference, 2007. ISSN 1751-8725.
- Khalid Ali, Sultan Jasim; Compact Dual Band Monopole Antenna for WLAN/ Wi Max Applications; International Conference On Micro electronics, Communication and Renewable energy (ICMiCR- 2013).
- George Casu, Catalin Marau, Andrei Kovacs; Design & Implementation of Micro strip Patch Antenna Array; IEEE 2014.
- V Srinivasa Rao, Dr. DR Jahangirdar, Prof. Girish Kumar; Design And Development of Broadband Circularly Polarized C- Band Micro Strip Antenna Array; Annual IEEE India Conference (INDICON), 2014.

Index Terms

Computer Science Wireless

Keywords
Design of Multilayer Micro Strip Antenna Array for Fixed WiMax Application

<table>
<thead>
<tr>
<th>Micro Strip Antenna</th>
<th>Rectangular Patch</th>
<th>Square Patch</th>
<th>Co-axial Feeding</th>
<th>Return Loss</th>
<th>Vswr</th>
<th>Directivity</th>
<th>Gain</th>
<th>Radiation Pattern</th>
</tr>
</thead>
</table>

- **Micro Strip Antenna**
- **Rectangular Patch**
- **Square Patch**
- **Co-axial Feeding**
- **Return Loss**
- **Vswr**
- **Directivity**
- **Gain**
- **Radiation Pattern**