Effect of Cosmological Constant on Higher Dimensional Husain Space-Time

Print
IJCA Proceedings on International Conference on Benchmarks in Engineering Science and Technology 2012
© 2012 by IJCA Journal
ICBEST - Number 1
Year of Publication: 2012
Authors:
Manisha S. Patil
Kishor D. Patil

Manisha S Patil and Kishor D Patil. Article: Effect of Cosmological Constant on Higher Dimensional Husain Space-Time. IJCA Proceedings on International Conference on Benchmarks in Engineering Science and Technology 2012 ICBEST(1):23-25, October 2012. Full text available. BibTeX

@article{key:article,
	author = {Manisha S. Patil and Kishor D. Patil},
	title = {Article: Effect of Cosmological Constant on Higher Dimensional Husain Space-Time},
	journal = {IJCA Proceedings on International Conference on Benchmarks in Engineering Science and Technology 2012},
	year = {2012},
	volume = {ICBEST},
	number = {1},
	pages = {23-25},
	month = {October},
	note = {Full text available}
}

Abstract

In the present work, we study the effect of cosmological constant on higher dimensional Husain space-time. We show that singularities arising in higher dimensional asymptotically flat space-time and in cosmological solution are naked but depend on the choices of the parameters. The naked singularities are found to be gravitationally strong, violating cosmic censorship hypothesis.

References

  • R. Penrose, ,Riv. Nuovo. Cimento. , 1 (1969), 252.
  • D. M. Eardley and L. Smar, Phys. Rev. , D 19 (1979), 2239.
  • D . Christodoulou, Commun. Math. Phys. , 93 (1984), 171.
  • P. S. Joshi and I. H. Dwivedi , Phys. Rev. , D 47 (1993), 5537.
  • K. D. Patil, Phys. Rev. , D 67 (2003), 024017.
  • K. D . Patil, S. H. Ghate and R. V. Saraykar, Pramana, J. Phys. 56, 503 (2001).
  • A. Papapetrou, in A Random walk in relativity and Gravitation, eds. N. Dadhich, , J. K. Rao, J. V. Narlikar and C. V. Vishveshwara, (Wiley, New York)(1985) pp. 184–191.
  • B . Waugh and K. Lake, Phys. Rev. D 34, 2978 (1986).
  • I. H. Dwivedi and P. S. Joshi, Class. QuantumGrav. 6, 1599 (1989).
  • K. Lake,. and T. Zannias, Phys. Rev. D 43, No. 6, 1798 (1991).
  • K. Lake, Phys. Rev. D 43, 1416 (1991).
  • K. D. Patil and U. S. Thool, Int. J. Mod . Phys. D 14, No. 6, 873-882 (2005).
  • A. Ori and, T. Piran ,Phys. Rev. Lett. 59, 2137 (1987).
  • A. Ori and, T. Piran, Phys. Rev. D 42, 1068 (1990).
  • T. Harko and K. S. Cheng, Phys. Lett. A 266, 249 (2000).
  • S. G. Ghoshand N. Dadhich , Gen. Rel. Grav. 35, 359 (2003).
  • H. Iguchi, K. Nakao and T. Harada, Phys. Rev. D72 62 (1998).
  • K. D. Patil, Phys. Rev. D67, 024017 (2003).
  • K. D. Patil, S. H. Ghate and R. V. Saraykar, Pramana, J. Phys. , 56, 503 (2001).
  • W. A. Hiscok, L. G. Williams and D. M. Eardley, Phys. Rev. D26, 751 (1982).
  • Y. Kuroda, Prog. Theor. Phys. 72, 63 (1984).
  • J. F. Villas da Rocha, Int. J. Mod. Phys. D 11,No. 1, 113-124 (2002).
  • L. K. Patel and NareshDadhich, gr-qc/ 9909068.
  • Wang Anzong and Yumei Wu, Gen. Relativ. Gravit. 31, 1 (1999).
  • S. W. Hawking and G. F. R. Ellis , The Large Scale Structure of Space-time (Cambridge University Press, Cambridge, 1973).
  • V. Husain, Phys. Rev. D 53, R 1759 (1996).
  • P. S. Joshi, Global Aspects in Gravitation and Cosmology, (Clarendon, Oxford,1993).
  • C. J. S. Clarke and A. Krolak, J. Geom. Phys. , 2 (1986), 127.
  • F. J. Tipler, Phys. Lett. , A 64 (1977), 8.