Growth, Structural and Dielectric Properties of Gallium doped Potassium Dihydrogen Phosphate (KDP) Single Crystal by Shankarnarayan –Ramasamy Method

Print
IJCA Proceedings on International Conference on Benchmarks in Engineering Science and Technology 2012
© 2012 by IJCA Journal
ICBEST - Number 3
Year of Publication: 2012
Authors:
N. S. Meshram
N. M. Gahane
R. N. Kakde
V. D. Maske
B. A. Shingade
K. G. Rewatkar
V. M. Nanoti

N S Meshram, N M Gahane, R N Kakde, V D Maske, B A Shingade, K G Rewatkar and V M Nanoti. Article: Growth, Structural and Dielectric Properties of Gallium doped Potassium Dihydrogen Phosphate (KDP) Single Crystal by Shankarnarayan Ramasamy Method. IJCA Proceedings on International Conference on Benchmarks in Engineering Science and Technology 2012 ICBEST(3):26-28, October 2012. Full text available. BibTeX

@article{key:article,
	author = {N. S. Meshram and N. M. Gahane and R. N. Kakde and V. D. Maske and B. A. Shingade and K. G. Rewatkar and V. M. Nanoti},
	title = {Article: Growth, Structural and Dielectric Properties of Gallium doped Potassium Dihydrogen Phosphate (KDP) Single Crystal by Shankarnarayan Ramasamy Method},
	journal = {IJCA Proceedings on International Conference on Benchmarks in Engineering Science and Technology 2012},
	year = {2012},
	volume = {ICBEST},
	number = {3},
	pages = {26-28},
	month = {October},
	note = {Full text available}
}

Abstract

Gallium doped Potassium Dihydrogen Phosphate (KDP) single crystals are grown by Shankarnarayan –Ramasamy growth technique. Slow cooling method was adapted for the growth with variation in doping concentration, there is modification in growth habit, non linear optical properties of doped crystals. Powder XRD determines the parameters of unit cell of doped KDP crystals. EDAX study shows presence of gallium ion in appropriate sites in unit cell. The Fourier Transform Infra Red (FTIR) spectrum reveals strong absorption bands due to gallium 3+ ion. UV spectra show improvement in optical transmittance. TGA –DTA determines the composition of materials and to predict their thermal stability at temperatures.

References

  • S. B. Monaco, L. E. Devis, S. P. Velsko, F. T. Wang, D. Eimerl, and A. Zalkin, J. Cryst. Growth 85, 252–255 (1987).
  • N. P. Rajesh, V. Kannan, P. Santhana Raghavan, P. Ramasamy, and C. W. Lan, "Nucleation studies and crystal growth of (NH4)H2PO4 doped with thiourea in supersaturated aqueous solutions," Materials Chemistry and Physics, vol. 76, no. 2, pp. 181–186, 2002.
  • N. P. Rajesh, V. Kannan, M. Ashok, K. Sivaji, P. Santhana Ragavan, P. Ramasamy,
  • Renuka Kadirvelraj, Santhanu Bhattacharya, Tayur N. Guru Row, J. Inclus. Phenom. Mol. Recogn. Chem. 30 (1998) 321.
  • Christer B. Aakeroy, Peter B. Hitchcock, J. Mater. Chem. 3 (11) (1993) 1129.
  • [A. A. Chernov, L. N. Rashkovich, A. A. Mkrtchan, Sov. Phys. -Cryst. 32 (1987) 432.
  • L. N. Rashkovich, G. T. Moldazhanova, Crystallogr. Rep. 39 (1994) 135.
  • A. A. Chernov, in: A. V. Shubnikov, N. N. Sheftal (Eds. ), Growth of Crystals, vol. 3, Consultants Bureau, New York, 1962, p. 35. C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy, McGraw-Hill, New York, NY, USA, 4th edition, 1994. .
  • J. F. Bringly, M Rajeshwaran, Acta. Cryst. , E62, m1304 (2006).
  • N. Vijayan, N. Balamurugan, R. Rameshbabu, R. Gopalakrishnan, P. Ramasamy, W. T. A. HarrisonJ. Crystal Growth 267 (2004) 218.
  • N. V. Prasad, G. Prasad, T. Bhimasankaran, S. V. Suryanarayana, G. S. Kumar, Indian J. Pure Appl. Phys. 14 (5) (1969) 639.
  • V. Krishnakumar and R. J. Xavier, "Vibrational analysis of 1,4-diaminoanthraquinone and 1,5- chloroanthraquinone: a joint FTIR, FT-Raman and scaled quantum mechanical study," Spectrochimica Acta Part A, vol. 61, no. 8, pp. 1799– 1809, 2005.