Abstract

The modern distributed systems have not only functional requirements (i.e. absence of deadlock, livelock etc.) but also have non-functional requirements (i.e. security, reliability, performance, Quality of Service (QoS) etc.). The methods for checking their correctness and analyze their performance is at very primitive stage. In the last few decades, formal verification techniques such as process algebras offer a powerful and rigorous approach for establishing the correctness of computer systems. Routing calculi (a such process algebra which is an elaboration of asynchronous distributed Pi calculus) which models a distributed networks with router as an active component in determining the path between communicating processes.
This algebra also take into account various types of routing tables updates upon creation of new nodes. The semantics of routing calculi has been defined to incorporate the cost of communicating processes after taking into consideration the number of routers crossings. In this paper, we survey to extend the routing calculi. This is done with an intention to aggregate the number of states in the state space of calculus. We propose this extension along the lines of PEPA nets. A brief sketch of the proposed extension is also given in this paper as future direction of our research.

References

- Hillston, J and Ribaudo, M. Modelling Mobility with PEPA Nets. In Aykanat, Cevdet and Dayar, Tugrul and Körpeoğlu, Ibrahim, editors, ISCIS in Lecture Notes in Computer Science,
A Stochastic Extension of the Routing Calculi

- J. Hillston. Fluid flow approximation of PEPA models. Quantitative Evaluation of
A Stochastic Extension of the Routing Caluli

- Hillston, Jane and Ciocchetta, Federica and Duguid, Adam and Gilmore, Stephen.
 Integrated Analysis from Abstract Stochastic Process Algebra Models. In Heiner, Monika and
 Uhrmacher, AdelindeM., editors, Computational Methods in Systems Biology in Lecture Notes
- Jane Hillston and Mirco Tribastone and Stephen Gilmore. Stochastic Process Algebras:
- Jane Hilston. A compositional Approach to Performance Modeling. Distinguished
- Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. in
 Conference Record of the 16th ACM Symposium on Principles of Programming
- R. Milner. Communicating and mobile systems: The -Calculus. Cambridge University
- Robin Milner. A Calculus of Communicating Systems. volume 92 of Lecture Notes in
- Pedro R. D’Argenio, Joost-Pieter Katoen, and Ed Brinksma. An algebraic
 approach to the specification of stochastic systems(extended abstract). In D. Gries and W. P.
 de Roever, editors, Proceedings of the IFIP working conference on Programming Concepts and
- Pourranjbar, Alireza and Hillston, Jane. An Aggregation Technique for Large-scale
 PEPA Models with Non-uniform Populations. Proceedings of the 7th International Conference
 on Performance Evaluation Methodologies and Tools in ValueTools @apos;13, pages 20–29,
 ICST, Brussels, Belgium, Belgium, 2013. ICST (Institute for Computer Sciences,
 Social-Informatics and Telecommunications Engineering).
- R. W. Butler. 'What is Formal Methods'. Available online from
- Richard A. Hayden, Jeremy T. Bradley. A fluid analysis framework for a Markovian
- Rocco De Nicola, Daniele Gorla, and Rosario Pugliese. Basic observables for a
- Tribastone, Mirco. The PEPA Plug-in Project. Proceedings of the Fourth International
 Conference on Quantitative Evaluation of Systems in QEST '07, pages 53–54,
- Trivedi, Kishor S. Probability and Statistics with Reliability, Queueing and Computer
Kluwer.

Index Terms
Computer Science
Distributed Systems

Keywords
Routing Calculi Stochastic Modelling Performance Modelling Aggregation