Abstract

In wide band communication systems, low power and high speed ADCs forms the main building blocks. These ADCs are commonly seen in the front end of the radio frequency receivers. Comparators are used in these ADCs. A CMOS Comparator design, based on amplifier-push pull inverter circuit is elaborated in this paper, which is intended to be used as the 1-bit ADC required for the implementation of a first order Delta Sigma (ΣΔ) A/D converter. This particular
Comparator Design for Delta Sigma Modulator

design for the comparator makes it faster and lowers the power dissipation. This design is
realized in both 180 nm and 90 nm CMOS processes using Cadence Virtuoso platform and low
power dissipation is found in 90 nm implementation with 1.2 V supply voltage. In this work
simulation results are reported and comparison of comparator in both technologies are
observed.

References

- M. A. Sohel, K. C. K. Reddy, and S. A. Sattar, "Design of low power sigma
delta adc," International Journal of VLSI design & Communication Systems (VLSICS) Vol,
- S. A. Halim, S. L. M. Hassan, N. Akbar, and A. Rahim, "Comparative study of
comparator and encoder in a 4-bit flash adc using 0.18mm cmos technology," in
- Y. Yin, Wideband High-Performance Sigma-Delta Modulators for High-Speed
- D. Jarman, "A brief introduction to sigma delta conversion," Application Note AN9504,
successive approximation analog-to-digital converter in standard 0.18 mm cmos
- J. A. Cherry and W. M. Snelgrove, Continuous-time delta-sigma modulators for
- B. Li, "Design of multi-bit sigma-delta modulators for digital wireless
, "A 2.5-v cmos wideband sigma-delta modulator," in IEEE Instrumentation and
- M. Devi, A. P. Chavan, and K. Muralidhar, "A 1.5 v 3bit, 500ms/s low power
mos flash adc," "
- A. M. Reaz, J. Jalil, and M. A. M. Ali, "Design of a low-power flash
analog-to-digital converter chip for temperature sensors in 0.18 mm cmos process," ActaScientiarum.
- P. C. Scholtens and M. Verretg, "A 6-b 1.6-gsample/s flash adc in0.18-
mm cmos using averaging termination," " Solid-State Circuits, IEEE Journal of, vol. 37, no. 12,
- S. Yewale and R. Gamad, "Design of low power and high speed cmos comparator
for a/d converter application," " 2012.
- B. Razaviand, Design of analog CMOS integrated circuits. , 2005

Index Terms
Keywords
Comparator Delta Sigma Adc Delta Sigma Modulator Flash Adc Dac