Notification: Our email services are now fully restored after a brief, temporary outage caused by a denial-of-service (DoS) attack. If you sent an email on Dec 6 and haven't received a response, please resend your email.
CFP last date
20 December 2024
Reseach Article

A Systematic Study of Change Detection Algorithms

Published on December 2013 by K. Venkateswaran, N. Kasthuri, D. Dorin Jeni
International Conference on Innovations In Intelligent Instrumentation, Optimization and Electrical Sciences
Foundation of Computer Science USA
ICIIIOES - Number 6
December 2013
Authors: K. Venkateswaran, N. Kasthuri, D. Dorin Jeni
5def3693-9718-481b-81b6-14085d4cbcf6

K. Venkateswaran, N. Kasthuri, D. Dorin Jeni . A Systematic Study of Change Detection Algorithms. International Conference on Innovations In Intelligent Instrumentation, Optimization and Electrical Sciences. ICIIIOES, 6 (December 2013), 21-27.

@article{
author = { K. Venkateswaran, N. Kasthuri, D. Dorin Jeni },
title = { A Systematic Study of Change Detection Algorithms },
journal = { International Conference on Innovations In Intelligent Instrumentation, Optimization and Electrical Sciences },
issue_date = { December 2013 },
volume = { ICIIIOES },
number = { 6 },
month = { December },
year = { 2013 },
issn = 0975-8887,
pages = { 21-27 },
numpages = 7,
url = { /proceedings/iciiioes/number6/14321-1557/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference on Innovations In Intelligent Instrumentation, Optimization and Electrical Sciences
%A K. Venkateswaran
%A N. Kasthuri
%A D. Dorin Jeni
%T A Systematic Study of Change Detection Algorithms
%J International Conference on Innovations In Intelligent Instrumentation, Optimization and Electrical Sciences
%@ 0975-8887
%V ICIIIOES
%N 6
%P 21-27
%D 2013
%I International Journal of Computer Applications
Abstract

The great presumption of change detection has led to rapid development of diverse change detection algorithms. Unsupervised change detection has a vital role in a wide variety of applications like remote sensing, motion detection, environmental monitoring, medical diagnosis, damage assessment, agricultural surveys, surveillance etc. In this paper a systematic survey of the commonly used methodologies for unsupervised change detection is presented.

References
  1. S. M. Metev and V. P. Veiko, Laser Assisted Microtechnology, 2nd ed. , R. M. Osgood, Jr. , Ed. Berlin, Germany: Springer-Verlag, 1998.
  2. L. Bruzzone and D. F. Prieto, "Automatic analysis of the difference image for unsupervised change detection," IEETrans. Geosci. RemoteSens. ,vol. 38,no. 3,pp. 1171-1182,2000
  3. L. Bruzzone and D. F. Prieto, "An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images,"IEEE Trans. Image Processing. ,vol. 11,no. 4,pp. 66-77,1996.
  4. C. Dumontier, F. Luthon, and J. -P. Charras, "Real-time DSP implementation for MRF-based video motion detection," IEEE Trans. Image Process. , vol. 8, no. 10, pp. 1341–1347, Oct. 1999.
  5. R. Collins,A. Lipton, and T. Kanade, "Introduction to special section on video surveillance," IEEE Trans. Pattern Anal. Mach. Intell. ,vol 22,no. 8,pp. 745-746,Aug. 2000.
  6. K. Grover,S. Quegan and C. da Costa Freitas, "Quantitative estimation of tropical forest cover by SAR," IEEE Trans. Geosci. Remote Sens. , vol. 37, no. 1, pp. 479–490, Jan. 1999.
  7. L. Bruzzone and S. B. Serpico, "An iterative technique for the detection of land-cover transitions in multitemporal remote- sensing images," IEEE Trans. Geosci. Remote Sens. ,vol. 35,,pp. 858-867,July 1997.
  8. P. S Chavez,Jr and D. J MacKinnon, "Automatic detection of vegetation changes in the south western united states using remotely sensed images,"Photogramm. Eng. Remote Sensing,vol. 60,no. 5,pp. 1285-1294,1994.
  9. K. R. Merril and L. Jiajun, "A comparison of four algorithms for change detection in an urban environment," Remote Sens. Environ. , vol. 63, no. 2, pp. 95–100, Feb. 1998.
  10. T. Celik, "A Bayesian approach to unsupervised multiscale change detection in synthetic aperture radar images," Signal Process. , vol. 90, no. 5,pp. 1471–1485, May 2010.
  11. Leonardo. P,Franceisco. G,Jose. A,SobrinoJuan. C,Jimenez. M and Haydee. K,2006,"Radiometric correction effects in lansat muti-date/multi-sensor change detection studies,International Journal of Remote Sensing,2,pp. 685-704.
  12. X. Dai and S. Khorram, "The effects of image misregistration on the accuracy of remotely sensed change detection," IEEE Trans. Geosci. Remote Sens. , vol. 36, no. 5, pp. 1566–1577, Sep. 1998.
  13. A. Elgammal, R. Duraiswami, D. Harwood, and L. S. Davis, "Background and foreground modeling using nonparametric kernel density estimation for visual surveillance," Proc. IEEE, vol. 90, no. 7, pp. 1151–1163, Jul. 2002.
  14. S. Watanabe, K. Miyajima, and N. Mukawa, "Detecting changes of buildings from aerial images using shadow and shading model," in Proc. ICPR, 1998, pp. 1408–1412.
  15. L. M. T. Carvalho, L. M. G. Fonseca, F. Murtagh, and J. G. P. W. Clevers, "Digital change detection with the aid of multi-resolution wavelet analysis,"Int. J. Remote Sens. , vol. 22, no. 18, pp. 3871–3876, 2001.
  16. S. Fukuda and H. Hirosawa, "Suppression of speckle in synthetic aperture radar images using wavelet," Int. J. Remote Sens. , vol. 19, no. 3, pp. 507–519, 1998.
  17. S. Quegan and J. Schou, "The principles of polarimetric filtering," in Proc. IGARSS, Aug. 1997, pp. 1041–1043.
  18. L. G. Brown, "A survey of image registration techniques," ACM Comput. Surv. , vol. 24, no. 4, 1992.
  19. S. Lavallee, Registration for Computer-Integrated Surgery: Methodology, State of the Art. Cambridge, MA: MIT Press, 1995.
  20. J. B. A. Maintz and M. A. Viergever, "A survey of medical image registration," Med. Image Anal. , vol. 2, no. 1, pp. 1–36, 1998.
  21. B. Zitová and J. Flusser, "Image registration methods: A survey," Image Vis. Comput. , vol. 21, pp. 977–1000, 2003.
  22. C. V. Stewart, C. -L. Tsai, and B. Roysam, "The dual-bootstrap iterative closest point algorithm with application to retinal image registration," IEEE Trans. Med. Imag. , vol. 22, no. 11, pp. 1379–1394, Nov. 2003.
  23. J. Barron, D. Fleet, and S. Beauchemin, "Performance of optical flow techniques," Int. J. Comput. Vis. , vol. 12, no. 1, pp. 43–77, 1994.
  24. D. A. Stow, "Reducing the effects of misregistration on pixel-level change detection," Int. J. Remote Sens. , vol. 20, no. 12, pp. 2477–2483, 1999.
  25. J. Townshend, C. Justice, C. Gurney, and J. McManus, "The impact of misregistration on change detection," IEEE Trans. Geosci. Remote Sens. , vol. 30, no. 5, pp. 1054–1060, Sep. 1992.
  26. X. Dai and S. Khorram, "The effects of image misregistration on the accuracy of remotely sensed change detection," IEEE Trans. Geosci. Remote Sens. , vol. 36, no. 5, pp. 1566–1577, Sep. 1998.
  27. L. Bruzzone and D. F. Prieto, "Automatic analysis of the difference image for unsupervised change detection," IEEE Trans. Geosci. Remote Sens. , vol. 38, no. 3, pp. 1171–1182, May 2000.
  28. A. Singh, "Digital change detection techniques using remotely-sensed data," Int. J. Remote Sens. , vol. 10, no. 6, pp. 989–1003, 1989.
  29. T. Celik, "Unsupervised change detection in satellite images using principal component analysis and k-means clustering," IEEE Geosci. Remote Sens. Lett. , vol. 6, no. 4, pp. 772–776, Oct. 2009.
  30. T. Celik, ''Multiscale change detection in multi temporal satellite images," IEEE Geosci. Remote Sens. Lett. , vol. 6, no. 4, pp. 822–824, Oct. 2009.
  31. X. Zhang, L. Wang, L. C. Jiao, ''An Unsupervised change detection based on clustering combined with multiscale and region growing,".
  32. P. Du, S. Liu, P. Gamba, K. Tan and J. Xia, ''Fusion of Difference Images for Change Detection Over Urban Areas," IEEE . J. Appl. Earth. Observ and Remote Sens. ,vol . 5,no. 4,pp. 1076-1085,August 2012.
  33. M. Gong, Z. Zhou, J. Ma,''Change Detection In SAR Images Based On Image Fusion And Improved Fuzzy Clustering,"IEEETrans. Imag. Process,vol. 21,no. 4,pp. 2141-2151,April 2012.
  34. A. Rosenfeld and P. De la Torre, ''Histogram concavity analysis as an aid in threshold selection,'' IEEE Trans. Syst. Man Cybern. SMC-13,231–235 ~1983.
  35. M. I. Sezan, ''A peak detection algorithm and it's application to histogram-based image data reduction,'' Graph. Models Image Process. 29, 47–59 ~1985.
  36. N. Ramesh, J. H. Yoo, and I. K. Sethi, ''Thresholding based on histogram approximation,'' IEE Proc. Vision Image Signal Process. 142~5!, 271–279 ~1995.
  37. D. E. Lloyd, ''Automatic target classification using moment invariant of image shapes,'' Technical Report, RAE IDN AW126, Farnborough, UK ~Dec. 1985.
  38. J. Kittler and J. Illingworth, ''Minimum error thresholding,'' Pattern Recogn. 19. 41-47~1986
  39. S. Cho, R. Haralick, and S. Yi, ''Improvement of Kittler and Illingworths's minimum error thresholding,'' Pattern Recogn. 22, 609–617~1989
  40. T. Pun, ''A new method for gray-level picture threshold using the entropy of the histogram,'' Signal Process. 2(3), 223–237 ~1980.
  41. C. H. Li and C. K. Lee, ''Minimum cross-entropy thresholding,'' Pattern Recogn. 26, 617–625 ~1993.
  42. H. D. Cheng, Y. H. Chen, and Y. Sun, ''A novel fuzzy entropy approach to image enhancement and thresholding,'' Signal Process. 75,277–301 ~1999.
  43. J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, ''A new method for gray-level picture thresholding using the entropy of the histogram,''Graph. Models Image Process. 29, 273–285 ~1985.
  44. J. C. Yen, F. J. Chang, and S. Chang, ''A new criterion for automatic multilevel thresholding,'' IEEE Trans. Image Process. IP-4, 370-378 ~1995.
  45. L. Hertz and R. W. Schafer, ''Multilevel thresholding using edge matching,'' Comput. Vis. Graph. Image Process. 44, 279–295 ~1988.
  46. A. Rosenfeld, ''The fuzzy geometry of image subsets,'' Pattern Recogn. Lett. 2, 311–317 ~1984.
  47. W. H. Tsai, ''Moment-preserving thresholding: A new approach,''Graph. Models Image Process. 19, 377–393 ~1985.
  48. Y. Liu and S. N. Srihari, ''Document image binarization based on texture analysis,'' Proc. SPIE 2181, 254–263 ~1994.
  49. Y. Liu, R. Fenrich, and S. N. Srihari, ''An object attribute thresholding algorithm for document image binarization,'' ICDAR'93: Proc. 2nd Intl. Conf. Document Anal. Recog. , pp. 278–281 ~1993.
  50. K. Ramar, S. Arunigam S. N. Sivanandam, L. Ganesan, and D. Manimegalai, ''Quantitative fuzzy measures for threshold selection,'' Pattern Recogn. Lett. 21, 1–7 ~2000.
  51. X. Fernandez, ''Implicit model oriented optimal thresholding using Kolmogorov-Smirnov similarity measure,'' ICPR'2000: Intl. Conf. Patt. Recog. , pp. 466–469, Barcelona ~2000.
  52. Y. Nakagawa and A. Rosenfeld, ''Some experiments on variable thresholding," Pattern Recogn. 11(3), 191–204 ~1979
  53. W. Niblack, An Introduction to Image Processing, pp. 115–116, Prentice-Hall, Englewood Cliffs, NJ ~1986.
  54. J. M. White and G. D. Rohrer, ''Image thresholding for optical character recognition and other applications requiring character image extraction,'' IBM J. Res. Dev. 27(4), 400–411 ~1983.
  55. Y. Yasuda, M. Dubois, and T. S. Huang, ''Data compression for check processing machines,'' Proc. IEEE 68, 874–885 ~1980.
  56. L. Bruzzone and D. F. Prieto, "Automatic analysis of the difference image for unsupervised change detection," IEEE Trans. Geosci. Remote Sens. ,vol. 38, no. 3, pp. 1171–1182, May 2000.
  57. Jun zhang,and Jinglu Hu. Image Segmentation Based on 2D Otsu Method with Histogram Analysis[C]/proc of International Conference on Computer Science and Software Engineering, 2008:105-108.
  58. N. Otsu, ''A threshold selection method from gray level histograms,'' IEEE Trans. Syst. Man Cybern. SMC-9, 62–66 ~1979.
  59. T. Celik, "Unsupervised change detection in satellite images using principal component analysis and k-means clustering," IEEE Geosci. Remote Sens. Lett. , vol. 6, no. 4, pp. 772–776, Oct. 2009.
  60. Volpi. M, Tuia. D, Campo-Valls. G and Kanevski. M, "Unsupervised Change Detection with kernels",IEEE Trans. Geosci. Remote Sens. ,vol. 9, no. 6, pp. 1026–1030, 2012.
  61. J. Bezdek, Pattern Recognition With Fuzzy Objective Function Algorithms. New York: Plenum, 1981.
  62. D. Pham, "An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities," Pattern Recognit. Lett. , vol. 20, pp. 57–68, 1999.
  63. J. W. Berger, T. R. Patel, D. S. Shin, J. R. Piltz, and R. A. Stone, "Computerized stereochronoscopy and alteration flicker to detect optic nerve head contour change," Ophthalmol. , vol. 107, no. 7, Jul. 2000.
  64. H. Liu and Q. Zhou ''Accuracy analysis of remote sensing change detection by rule-based rationality evaluation with post-classification comparison"International Journal of Remote Sensing,25(5),pp. -1037-1050.
  65. P. Rosin, "Thresholding for change detection," Comput. Vis. Image Understanding,vol. 86, no. 2, pp. 79–95, May 2002.
  66. G. H. Rosenfield and A. Fitzpatrick-Lins, "A coefficient of agreement as a measure of thematic classification accuracy," Photogramm. Eng. Remote Sens. , vol. 52, no. 2,pp. 223–227,1986.
Index Terms

Computer Science
Information Sciences

Keywords

Change Detection Image Differencing Feature Vector Thresholding Clustering.