Abstract

As the cloud users and their data are growing very rapidly, the cloud service providers are also establishing the power hungry datacenters across the world to grant all types of cloud services and to store the data. Cloud providers are facing challenging problems of energy and SLA tradeoff, minimization of operating cost and CO2 emission in environment. The VM consolidation is extremely efficient and proactive approach for saving the energy online with dynamic workloads in cloud datacenters. In this paper, we have proposed a new host overload detection policy for reducing the energy consumption with low SLA violation. The simulation results with cloudsim guarantees for minimizing the energy consumption and maximizing the
An Improved Energy-Efficient Policy for Overload Host Detection in Cloud Environment

SLA by preserving the VM migration, average SLAV, frequency of host shutdown in comparison with state of arts.

References

- Dianne Rice, Diana Cercy, Jason Glick, Cathy Sandifer and Bob. Spec.
An Improved Energy-Efficient Policy for Overload Host Detection in Cloud Environment

org/power_ssj2008/results/

Index Terms

Computer Science Distributed Systems

Keywords

Energy Slav Host Virtual Machines (vm) Vm Consolidation (vmc) Datacenters (dc)