Abstract

We are living in the age of global interconnectivity where Internet and related communication technology reign supreme and has taken a place of basic necessity in business as well as daily routine. This interconnectivity is enhanced extremely with the help of Search Engine. Tools of Search Engine enable us to find information on the web database rapidly. On the other hand, this rapidity of information availability has not been relevant to actual user need. There have been continuous efforts to find relevant contents accurately but still they are far from satisfactory. Therefore there is a need to design efficient and optimum Search Engine to surmount this
problem of relevancy. In this paper, we are proposing few novel methods to enhance Search Engine relevancy in terms of user query. The key aim is to address and resolve issues that crops up in search outcomes. Existing Schema matching technique identify meaningful document and their essential features for document selection. It helps in reducing the amount of user efforts. Several matching techniques are used currently for improving the search. Still the results obtained from these matching techniques are far from perfect. So in this paper we are proposing more efficient schema matching technique named Instance Based Schema Matching for enhancing the search result. This Instance based schema matching is having an automatic approach to find the name of schema elements, the structure of the schema and formal ontology to improve the search outcomes by retrieving accurate data from web databases. In order to implement Schema Matching Technique for unstructured data requires Wrapper Generation process. This process is used to obtain common format of data from different source. It also implements a query engine which extracts the user query relevance data from target data source. To obtain accurate and relevant information out of the raised query there is a need to bring result that displays the list of matched documents.

References

- Hongkun Zhao, Weiyi Meng, "Fully Automatic Wrapper Generation For Search Engines", ACM, 2005

Index Terms

Computer Science Information Sciences
Keywords
Wrapper Generation Query Engine Formal Ontology