Abstract

It is observed that there are two limitations with conventional MOSFET, especially Sub threshold swings and high off current. Subthreshold has minimum value of 60 mV/decade [1]. But we cannot get lower sub-threshold swing than this value with conventional MOSFET. These limitations are overcome by Tunnel Field effect transistors (TFET). TFET is working on tunneling effect, which requires less input voltages to decrease band gap due to presence of p-i-n region. Also there are very low OFF- current in TFET and hence low power consumption. The TFET works on band-to-band tunneling (BTBT) principle. In this paper, principle operation of TFET has been studied, and then simulation of the TFET using Sentaurus TCAD software.
References

- Yunfei Gao, Siyuranga O. Koswatta, Dmitri E. Nikonov, and Mark S. Lundstrom, p-i-n Tunnel FETs vs. n-i-n MOSFETs: Performance Comparison from Devices to Circuits, IBM T. J. Watson Research Center, Technology and Manufacturing Group, Intel Corp.,
- Uygar E. Avci, Member, IEEE, Rafael Rios, Member, IEEE, Kelin J. Kuhn, Fellow, IEEE, and Ian A. Young, Fellow, IEEE, Comparison of Power and Performance for the TFET and MOSFET and Considerations for P-TFET, IEEE International Conference on Nanotechnology, Portland Marriott August 15-18, 2011, Portland, Oregon, USA
- Madhusudan Singh, Student Member, IEEE, Yuh-Renn Wu, Student Member, IEEE, and Jasprit Singh, Velocity Overshoot Effects and Scaling Issues in III–V Nitrides, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 52, NO. 3, MARCH 2005
- Hao Lu, David Esseni, Alan Seabaugh, Universal analytic model for tunnel FET circuit simulation, 2014 Elsevier Ltd. All rights reserved.
- Anthony Villalon, Gilles Le Carval, Sebastian Martinie, Cyrille Le Royer, Marie-Anne Jaud, and Sorin Cristoloveanu, Further In-sights in TFET Operation, 2014 IEEE TRA-NSACTIONS ON ELECT-RON DEVI-CES, VOL. 61

Index Terms

Computer Science
Circuit And Systems
Keywords
Band To Band Tunneling Tfet Tunnel Field Effect Transistor Low Voltage Operating Transistor.