Call for Paper - August 2022 Edition
IJCA solicits original research papers for the August 2022 Edition. Last date of manuscript submission is July 20, 2022. Read More

A Review onthe Low Noise Amplifier for Wireless Application

Print
PDF
IJCA Proceedings on International Conference on Microelectronic Circuit and System
© 2015 by IJCA Journal
MICRO 2015 - Number 1
Year of Publication: 2015
Authors:
Ch. Anandini
Ram Kumar
Lison Singh
F. A. Talukdar

Ch.anandini, Ram Kumar Singh and F.a.talukdar. Article: A Review onthe Low Noise Amplifier for Wireless Application. IJCA Proceedings on International Conference on Microelectronic Circuit and System MICRO 2015(1):11-18, December 2015. Full text available. BibTeX

@article{key:article,
	author = {Ch.anandini and Ram Kumar andlison Singh and and F.a.talukdar},
	title = {Article: A Review onthe Low Noise Amplifier for Wireless Application},
	journal = {IJCA Proceedings on International Conference on Microelectronic Circuit and System},
	year = {2015},
	volume = {MICRO 2015},
	number = {1},
	pages = {11-18},
	month = {December},
	note = {Full text available}
}

Abstract

This proposal reviews the design aspects of a low noise amplifier (LNA) of a RF receiver for wireless communication. This LNA has an operating frequency range covering almost all the working bands of wireless communications standard like Bluetooth, GSM, and the third generation mobile communication. It is presented that this LNA is expected to have high linearity due to possibility of large interference signal tones that are present at the receiver end. But this LNA must have high linearity but not at the expense of sacrificing any other specification like gain and noise figure. This paper gives an idea of an LNA that will be of great convenience for multi-standard RF wireless communication.

References

  • Yung-Wey Chong and Tat-Chee Wan, et al. (2013). Comparative Study on Hybrid Header Compression over Satellite–Wireless Networks. IETE TECHNICAL REVIEW ,vol 30,issue 6 .
  • Introduction to RF & Wireless Communications Systems, Publish Date: Apr 05, 2011W. -K. Chen, Linear Networks and Systems (Book style). Belmont, CA: Wadsworth, 1993, pp. 123–135.
  • RF Wireless Technology, publish in Application and Technologies by Mouser Electronics B. Smith, "An approach to graphs of linear forms (Unpublished work style)," unpublished.
  • SIVAKUMAR GANESAN,"HIGHLY LINEAR LOW NOISE AMPLIFIER",a Thesis, Texas A&M University, May 2006.
  • . Godara, B. , & Fabre, A. "A versatile wideband impedance matching circuit based on current conveyors". Institute of Engineering and Technology (IET). Electronics Letters. (accepted for publication).
  • T. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, CambridgeUniversity Press, 1998.
  • Chastellain F "Looking Inside Modern Receivers" Microwave Magazine, IEEE ,vol:12 , Issue: 2,May 2011
  • Khadijah Ismail, P. SusthithaMenon,"Flat Gain, Wide Bandwidth of In?line Semiconductor Optical Amplifier in CWDM Systems"IETE TECHNICAL REVIEW ,vol 30(6) ,NOV-DEC 2013.
  • R. Meyer and A. Wong, "Blocking and Desensitization in RF Amplifier," IEEE Journal of Solid-State Circuits, vol. 30, no. 8, pp. 944-946, Aug. 1995.
  • R. S. Carson, Radio Communications Concepts: Analog. New York: Wiley, 1990
  • ShuzuoLou,Howard C. Luong, "A Linearization Technique for RF Receiver Front-End Using Second-Order- Intermodulation Injection", IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 11, NOVEMBER 2008
  • ChunmingLid HertgXiao,"NONLINEAR DISTORTION ANALYSIS OF RF POWER AMPLIFIERS FOR WIRELESS SIGNALS", ICSPO2 Proceedings
  • Girlando, G. , &Palmisano, G. (1999). Noise figure and impedance matching in RF cascode amplifiers. IEEE Transactions on Circuits and Systems—II, Analog and Digital Signal Processing,46(11), 1388–1396.
  • Hazenboom, S. , et al. (2006). A comparison of substrate noise coupling in lightly and heavily doped CMOS processes for 2. 4-GHz LNAs. IEEE Journal of Solid-State Circuits, 41(3), 574–587.
  • Jeon, Y. -J. , et al. (1998). Monolithic feedback low noise X-band amplifiers using 0. 5-lm GaAs MESFET's: Comparative theoreticalstudy and experimental characterization. IEEE Journal of Solid-State Circuits, 33(2), pp. 275–279 (February, brief papers).
  • Myoung, S. -S. , et al. (2005). Low-noise and high-linearity LNA based on InGaP/GaAs HBT For 5. 3-GHz WLAN. Microwave and Optical Technology Letters, 46(6), 550–553
  • Rudell, J. C. , et al. (1997). A 1. 9-GHz wide-band IF double conversion CMOS receiver for cordless telephone applications. IEEE Journal of Solid-State Circuits, 32(12), 2071–2088
  • Zhang, F. , et al. (2006). Low-power programmable gain CMOS distributed LNA. IEEE Journal of Solid-State Circuits, 41(6),1333–1343.
  • Abidi, A. A. , et al. (1999). De-embedding the noise figure of differential amplifiers. IEEE Journal of Solid-State Circuits, 34(6), 882–885.
  • van der Heijden, M. P. , et al. (2004). On the design of unilateral dual-loop feedback low-noise amplifiers with simultaneous noise, impedance, and IIP3 match. IEEE Journal of Solid-State Circuits,39(10), 1727–1736. Analog IntegrCirc Sig Process (2009) 60:169–193 191
  • Bevilacqua, A. , &Niknejad, A. M. (2004). An ultra-wideband CMOS low-noise amplifier for 3. 1–10. 6-GHz wireless receivers. IEEE Journal of Solid-State Circuits, 39(12), 2259–2268.
  • Ismail, A. , et al. (2004). A 3–10-GHz low-noise amplifier with wideband LC-ladder matching network. IEEE Journal of Solid- State Circuits, 39(12), 2269–2277.
  • Kim, C. -W. , et al. (2005). An ultra-wideband CMOS low noise amplifier for 3–5-GHz UWB system. IEEE Journal of Solid-State Circuits, 40(2), 544–547.
  • Dubois, M. -A. , et al. (2006). Monolithic above-IC resonator technology for integrated architectures in mobile and wireless communication. IEEE Journal of Solid-State Circuits, 41(1), 7–16.
  • Kim, N. , et al. (2006). A cellular-band CDMA 0. 25-lm CMOS LNA linearized using active post-distortion. IEEE Journal of Solid-State Circuits, 41(7), 1530–1534.
  • Shaeffer, D. K. , et al. (1997). A 1. 5-V, 1. 5-GHz CMOS low noise amplifier. IEEE Journal of Solid-State Circuits, 32(5), 745–759.
  • Shana'a, O. , et al. (2001). Frequency-scalable SiGe bipolar RF front-end design. IEEE Journal of Solid-State Circuits, 36(6), pp. 888–895 (June).
  • Schmidt, A. , et al. (2001). "A universal dual band LNA implementation in SiGe technology for wireless applications". IEEE Journal of Solid-State Circuits, 36(7), pp. 1127–1131 (July brief papers).
  • Huang, Q. , et al. (1999). GSM transceiver front-end circuits in0. 25 lm CMOS. IEEE Journal of Solid-State Circuits, 34(3),292–303.
  • Abou-Allam, E. , Nisbet, J. J. , &Maliepaard, M. C. (2001). Lowvoltage 19-GHz front-end receiver in 0. 5-lm CMOS technology. IEEE Journal of Solid-State Circuits, 36(10), 1434–1443.
  • Gatta, F. , Sacchi, E. , Svelto, F. , Vilmercati, P. , &Castello, R. (2001). A 2-dB noise figure 900-MHz differential CMOS LNA.
  • Karanicolas, N. (1996). A 2. 7-V 900-MHz CMOS LNA and mixer. IEEE Journal of Solid-State Circuits, 31(12), 1939–1944.
  • Leroux, P. , et al. (2002). A 0. 8-dB NF ESD-protected 9-mWCMOS LNA operating at 1. 23 GHz. IEEE Journal of Solid-State Circuits, 37(6), pp. 760–765 (June brief papers).
  • Charlon, O. , et al. (2006). A low-power high-performance SiGeBiCMOS 802. 11a/b/g transceiver IC for cellular and Bluetooth co-existence applications. IEEE Journal of Solid-State Circuits,41(7), 1503–1512.
  • Rogin, J. , et al. (2003). A 1. 5-V 45-mW direct-conversion WCDMA receiver IC in 0. 13-m CMOS. IEEE Journal of Solid-State Circuits, 38(12), 2239–2248.
  • Yamamoto, K. , et al. (2001). A 2. 4-GHz-band 1. 8-V operation single-chip Si-CMOS T/R-MMIC front-end with a low insertionloss switch. IEEE Journal of Solid-State Circuits, 36(8), 1186–1197.
  • Bruccoleri, F. , Klumperink, E. A. M. , &Nauta, B. (2004). Wideband CMOS low-noise amplifier exploiting thermal noise canceling. IEEE Journal of Solid-State Circuits, 39(2), 275–282
  • BalwantGodara Æ Alain Fabre, Low-noise amplifiers in wireless communications: state of the art,two new wideband all-active LNAs in SiGe-BiCMOS, Analog IntegrCirc Sig Process (2009) 60:169–193IEEE Journal of Solid-State Circuits, 36(10), 1444–1452