Abstract

This paper aims at designing a cost-effective, portable and easy-to-use brushless DC (BLDC) motor driven continuous positive airway pressure (CPAP) based respirator for patients with acute breathing trouble. The proposed system is intended to facilitate continuous monitoring of patient’s condition with positive airway support provided by a brushless DC (BLDC) motor...
driven respirator blower fan by measuring Respiration Rate (RR). To measure the respiration rate, a pair of capacitive type respiration rate sensors are mounted below Right Nostril (RN) and Left Nostril (LN), in such a way that the nasal airflow during inspiration and expiration impinge on the sensor diaphragms directly. Due to irregularities in nasal airflow in some respiratory diseases, the respiration rate (RR) varies from the normal rate (12-20). Thus, a supporting airflow regulatory system has been designed to reduce abnormalities in respiration rate (RR). In this case a low cost sensorless commutated BLDC drive is implemented with a three phase inverter and microcontroller by using feedback of rotor rpm. A suitable cost effective algorithm has also been developed to generate an appropriate six transistor switching sequence to commute the BLDC motor according to the RR of the subject. The characteristics of the implemented drive give satisfactory outputs over a wide range of controlled speed variation from 200 to 2440 rpm which requires a match with the patient's breathing demand. The effectiveness of the designed system is populated by the real time experimental results.

References

- Santanu Mondal, Arunabha Mitra, Debjyoti Chowdhury, Madhurima Chattopadhyay, "A new approach of sensorless control methodology for achieving ideal characteristics of brushless dc motor using MATLAB/Simulink", IEEE conference on Computer,
Communication, Control and Information Technology (C3IT), 2015, DOI: 10. 1109/C3IT. 2015. 7060197, pp. 1-4.

Index Terms

Computer Science
Embedded Systems

Keywords

Positive Airway Respirator
Blower Fan
Brushless Dc Motor
Respiration Rate
Chronic Obstructive Pulmonary Diseases.