CFP last date
20 June 2024
Reseach Article

Ultra Wideband Low Noise Amplifier Design and Optimization for Next Generation RF Receiver using 0.18mm CMOS

Published on December 2018 by Hasmukh P. Koringa, Vipul A. Shah
International Conference on Microelectronic Circuit and System
Foundation of Computer Science USA
MICRO2017 - Number 1
December 2018
Authors: Hasmukh P. Koringa, Vipul A. Shah
900feab5-b728-4faa-b33f-677f7bf6b9f6

Hasmukh P. Koringa, Vipul A. Shah . Ultra Wideband Low Noise Amplifier Design and Optimization for Next Generation RF Receiver using 0.18mm CMOS. International Conference on Microelectronic Circuit and System. MICRO2017, 1 (December 2018), 6-13.

@article{
author = { Hasmukh P. Koringa, Vipul A. Shah },
title = { Ultra Wideband Low Noise Amplifier Design and Optimization for Next Generation RF Receiver using 0.18mm CMOS },
journal = { International Conference on Microelectronic Circuit and System },
issue_date = { December 2018 },
volume = { MICRO2017 },
number = { 1 },
month = { December },
year = { 2018 },
issn = 0975-8887,
pages = { 6-13 },
numpages = 8,
url = { /proceedings/micro2017/number1/30176-1623/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference on Microelectronic Circuit and System
%A Hasmukh P. Koringa
%A Vipul A. Shah
%T Ultra Wideband Low Noise Amplifier Design and Optimization for Next Generation RF Receiver using 0.18mm CMOS
%J International Conference on Microelectronic Circuit and System
%@ 0975-8887
%V MICRO2017
%N 1
%P 6-13
%D 2018
%I International Journal of Computer Applications
Abstract

In 2002 Federal Communication Committee (FCC) has released an unlicensed 3. 1 - 10. 6 GHz Ultra Wideband (UWB) for commercial applications. The UWB technology has desirable features such as accurate timing in range resolution, less multi path fading, high data rate transmission and easier material penetration due to 7. 5 GHz wideband. The FCC has put restriction on transmission power (EIPR must less than -41. 3 dBm/MHz) and bandwidth (not less than 500 MHz) for UWB use in commercial applications. UWB receiver require high power gain, low noise figure and wideband matching due to FCC restriction on transmission power. The most critical part to design in UWB receiver is Low Noise Amplifier (LNA). The designing of LNA for UWB receiver is still challenging task. In this paper proposed multistage LNA topology for UWB receiver. The proposed LNA topology has Common Gate (CG) in first stage for wideband matching. The proposed LNA achieved more than 20 dB power gain, average 3. 3 dB noise figure and good input matching (S11<-9 dB) in wideband (3. 1 – 10. 6 GHz), while consuming total 19 mA current from 1. 8V supply including bias circuit current. The LNA design achieved good linearity, average IIP3 is -5. 5 dBm by proper biasing of the all amplifier stages. The standard 0. 18µm CMOS technology is used to design the LNA.

References
  1. T. H. Lee, 1998. The Design of CMOS Radio-Frequency Integrated Circuits, 2nded. , Cambridge University Press, Cambridge, U. K.
  2. H. Hashemi, A. Hajimiri, 2002. "Concurrent multiband low-noise amplifiers theory,design and applications", IEEE Trans. Microwave Theory Tech. 50(1) pp. 288–301.
  3. C. W. Kim, M. S. Kang, P. T. Anh, H. T. Kim, S. G. Lee, 2005. "An ultra wideband CMOS low noise amplifier for 3–5-GHz UWB system", IEEE J. Solid-State Circuits 40 (2) pp. 544–547.
  4. H. L. Kao, K. C. Chang, 2008. "Very low power CMOS LNA for UWB wireless receivers using current reused topology", J. Solid State Electron. no. 52 pp. 86–90.
  5. H. -Jin Lee, D. S. Ha, Sang S. Choi, 2006. "A 3–5 GHz CMOS UWB LNA with input matching using miller effect", IEEE International Solid-State Circuits Conference.
  6. H. K. Chen, Y. S. Lin, S. S. Lu, 2010. "Analysis and design of a 1. 6–28-GHz compact wideband LNA in 90-nm CMOS using a ?-match input network", IEEE Trans. Microwave Theory Tech. 58 (8).
  7. M. S. Jung, C. W. Kim, P. T. Anh, H. T. Kim, S. G. Lee, 2005. "A 2. 7–9. 3 GHz CMOS wideband amplifier combined with high pass filter for UWB system", in Proceedings of 7th International Conference on Advanced Communication Technology (ICACT2005).
  8. F. Zhang, P. R. Kinget, 2006. "Low power programmable gain CMOS distributed LNA", IEEE J. Solid-State Circuits 41 (6).
  9. P. Heydari, 2007. "Design and analysis of a performance optimized CMOS UWB distributed LNA", IEEE J. Solid State Circuits 42 (9).
  10. F. Bruccoleri, E. A. M. Klumperink, B. Nauta, 2004. "Wide-band CMOS low-noise amplifier exploiting thermal noise canceling", IEEE J. Solid-State Circuits39 (2).
  11. A. Bevilacqua, A. Niknejad, 2004. "An ultra-wideband CMOS LNA for 3. 1 to 10. 6GHz wireless receivers", IEEE J. Solid-State Circuits 39 (12) pp. 2259–2268.
  12. M. T. Reiha, J. R. Long, 2007. "A 1. 2V reactive feedback 3. 1-10. 6GHz low-noise amplifier in 0. 13 ?m CMOS", IEEE J. Solid State Circuits 42 (5) pp. 1023–1033.
  13. C. Liao, S. Liu, 2007. "A broadband noise-canceling CMOS LNA for 3. 1–10. 6-GHz UWB receivers", IEEE J. Solid State Circuits 42 (2).
  14. R. Ramzan, S. Andersson, J. Dabrowskiand C. Svensson, 2007. "A 1. 4V 25mW inductorless wideband LNA in 0. 13 um CMOS", IEEE international Solid-State Circuits Conference, pp. 424–425.
  15. W. Chen, G. Liu, B. Zdravko, A. Niknejad, 2008. "A highly linear broadband CMOS LNA Employing Noise and Distortion Cancellation", IEEE J. Solid-State Circuits 43 (5).
  16. S. Toofan, A. R. Rahmati, A. Abrishamifar, G. Roientan Lahiji, 2008. "Low power and high gain current reuse LNA with modified input matching and inter-stage inductors", Microelectron. J. 39 (12) pp. 1534–1537.
  17. S. Woo, W. Kim, C. Lee, K. Lim, J. Laskar, 2009. "A 3. 6mW Differential common gate CMOS LNA with positive negative feedback", IEEE International Solid-State Circuits Conference, pp. 218–220.
  18. Y. J. Wangand A. Hajimiri, 2009. "A compact low-noise weighted distributed amplifier in CMOS", in Proceedings of the IEEE International Solid State Circuits Conference, pp. 220–222.
  19. K. C. He, M. T. Li, C. M Li, J. H. Tarng, 2010. "Parallel RC feedback low noise amplifier for UWB applications", IEEE Trans. Circuits and Sys. —II: Express Briefs 57(8).
  20. Y. Sheng Lin, C. Zhi Chen, H. Yu Yang, C. Chen, J. H. Lee, G. W. Huang, S. S. Lu, 2010. "Analysis and design of a CMOS UWB LNA with dual RLC branch wideband input matching network", IEEE Trans. Microwave Theory Tech. 58 (2).
  21. B. Machiels, P. Reynaert, M. Steyaert, 2010. "Power efficient distributed low noise amplifier in 90nm CMOS", in Proceedings of the IEEE Proceedings of Radio Frequency Integrated Circuits Symposium, pp. 131–134.
  22. E Ahmed Sobhy, Ahmed A Helmy, S Hoyos, K Entesari and E Sanchez-Sinencio, 2011. "A 2. 8mW Sub 2dB Noise Figure Inductorless Wideband CMOS LNA Employing Multiple Feedback", in IEEE Trans. Of Microwave Theory and Techniques, 59 (12) pp. 3154-3161.
  23. J. Y. lee, H. K. Park, H. J. Chang and T. Y. Yun, 2012. "Low Power UWB LNA with common gate and current reuse techniques", IET Microw, Antennas Propag. , 6 (7) pp. 793-799.
  24. X. , Wang, J. Sturm, N. yan, X. Tan, and H. Min, 2012. "0. 6-3GHz Wideband Receiver RF Front-End With a Feedforward Noise and Distortion Cancellation Resistive-Feedback LNA", IEEE Trans. On Microwave Theory and Techniques, 60 (2) pp. 387-392.
  25. A. I. A. Galal, R. Pokharel, H. Kanaya and K. Yoshida, 2012. "High Linearity technique for ultra wideband low noise amplifier in 0. 18um CMOS technology", International Journal of Electronics and Communication (AEU) , Elsevier, 66 pp. 12-17.
  26. L. Belostotski, A. Madanayake and L. T. Bruton, 2012. "Wideband LNA with an Active –C Element", IEEE Microwave and Wireless Components Letters, 22 (10) pp. 524-526.
  27. Donggu Im, 2013. "A +9dBm output P1dB Active Feedback CMOS Wideband LA for SAW Less Receivers", IEEE Transaction on Circuits and Systems-II Express briefs, 60 (7) pp. 377-381.
  28. K. Yousef, H. Jia, R. Pokharel, A. Allam, M. Ragab, H. Kanaya and k. Yoshida, 2013. "CMOS Ultra-Wideband Low Noise Amplifier Design", Internatonal Journal of Microwave Science and Technology.
  29. S. Arshad, R. Ramzan, K. Khurram Muhammad and Q. ul Wahab, 2015. "A sub-10mW , noise cancelling, wideband LNA for UWB applications", International Journal of Electronics and Communications (AEU) Elsevier, (69) pp. 109-118.
  30. A. Zoaei, and A. amirabadi, 2015. "A 130nm wideband fully differential linear low noise amplifier", Elsevier Microelectronics Journal, (46) pp. 825-833.
  31. Hasmukh P Koringa, Bhusan D Joshi and Dr. Vipul A Shah 2015. "High Power Gain Low Noise Amplifier Design for Next Generation 1-7GHz Wideband RF Frontend RFIC using 0. 18µm CMOS" in IEEE 19th International Symposium on VLSI Design and Test (VDAT-2015) during june 26-29, DOI 10. 1109/ISVDAT. 2015. 7208105.
Index Terms

Computer Science
Information Sciences

Keywords

Cmos Lna Next Generation Radio Frequency Frontend Uwb