Abstract

Great research work have been conducted towards Intrusion Detection Systems (IDSs) as well as feature selection. Feature selection applications have a great influence on decreasing development lead times and increasing product quality as well as proficiency. IDS guards a system from attack, misuse, and compromise. It can also screen network action. Network traffic observing and extent is progressively regarded as a key role for understanding and improving the performance and security of our cyber infrastructure. By using IDS attack can be detected in system as info is vital strength for every business. It can cause millions of harm within a few seconds. Security is important factor because reputation of business depends on it. So timely detection of intrusion is important so that preventive actions can be taken. IDS
framework has been proposed by using fuzzy feature selection method with ARTMAP. It has
been observed that the proposed framework gives better accuracy in less time as compared to
methods in literature.

References

- A Fast clustering based feature subset selection algorithm for high dimensional data
 Qinbao Song, Jingjie Ni, and Guangtao Wang ieee transactions on knowledge and data
 engineering, VOL. 25, NO. 1, Jan 2013.
 - Z. Zhao and H. Liu, Spectral Feature Selection for Data Mining, USA: Chapman and
 Hall-CRC, 2012.
 - M. Belkin and P. Niyogi, "Laplacian eigenmaps and spectral techniques for
 embedding and clustering," in Proc. NIPS, 2002.
 - I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach.
 - J. G. Dy and C. E. Brodley, "Feature selection for unsupervised learning," J. Mach.
 - M. Robnik-Sikonja and I. Kononenko, "Theoretical and empirical analysis of relief
 - L. Yu and H. Liu, "Efficient feature selection via analysis of relevance and
 - Z. Zhao and H. Liu, "Spectral feature selection for supervised and unsupervised
 - X. He, D. Cai, and P. Niyogi, "Laplacian score for feature selection," in Proc.
 NIPS, Vancouver, Canada, 2005.
 - L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt, "Feature selection
 1393–1434.
 - Z. Zhao and H. Liu, "Semi-supervised feature selection via spectral
 analysis," in Proc. SIAM Int. Conf. Data Mining, Tempe, AZ, USA, 2007, pp. 641–646.
 - D. Zhang, Z. Zhou, and S. Chen, "Semi-supervised Dimensionality
 reduction," in Proc. SIAM Int. Conf. Data Mining, Pittsburgh, PA, USA, 2007.
 - O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT
 - S. Basu, M. Bilenko, and R. Mooney, A probabilistic framework for
 - U. Brefeld, T. Gürtner, T. Scheffer, and S. Wrobel, Efficient co-regularized
 least squares regression, in ICML '06, Pittsburgh, PA, 2006, pp. 137–144.
 - K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl, Constrained
 k-means clustering with background knowledge, in ICML '01, Williamstown, MA, 2001, pp.

2 / 3
Effective Fast and Fuzzy Art Map Performance to Detect Intrusion

577–584.

- Swati Sonawale and Roshani Ade "Intrusion detection system-via fuzzy ARTMAP in addition with advance semi supervised feature selection" International journal of data mining and knowledge management process(IJDKP),vol. 5, no. 3,May 2015.

Index Terms

Computer Science Fuzzy Systems

Keywords

Feature Selection Intrusion Detection Redundancy Fuzzy Artmap.