Abstract

Lot of research in the field of human recognition is being carried out. Gait recognition is a relatively new approach which is gaining momentum in biometrics. We have demonstrated a simple approach as a solution to this problem. We have taken a feature which was proposed earlier i.e. the Silhouette Vector. This is the distance of boundary points from the centroid of the silhouette as it rotates 360 degrees. Additional to the silhouette vector, we divided the silhouette image into three equal parts vertically (Rectangular Features) and computed some statistical properties of these parts. These properties were also added to the silhouette vector and given to the PCA training system. Training was performed using silhouette vectors and
rectangular vectors for each subject. For testing the system, nearest neighbor method was used which is one of the simplest algorithms used for classification problems. The test subject is assigned to the class which is the minimum Euclidean distance from it. Inclusion of the additional features has improved the system performance greatly. Cumulative match score was used to analyze the system performance.

References

- Dong Ming, Cong Zhang, Yanru Bai, Baikun Wan, Yong Hu, K. D. K. Luk (2009). Gait recognition based on multiple views fusion of wavelet descriptor and human skeleton model. IEEE International Conference on Virtual Environments, Human - Computer Interfaces and Measurements Systems, VECIMS '09, Page(s): 246 - 249.
Human Gait Recognition using Silhouette Vector and Principal Component Analysis

- Weihua He, Ping Li (2010). Gait recognition using the temporal information of leg angles. 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT). Page(s): 78-83.

Index Terms

Computer Science
Pattern Recognition

Keywords

Gait Cycle
Silhouette Vector
Rectangular Vector
Pca