Abstract

Filters are the key components in communication system. Compactness of filters is an important design constraint. Due to limitations in design methods for filters at low frequency, several newer techniques for filter design at higher frequency are invented. Hybrid microstrip coplanar waveguide technique among these techniques gives a way to design a compact filter structure meeting the required (UWB) specifications. In this paper, a filter based on hybrid
Compact Ultra Wide Band (UWB) Bandpass Filter using Hybrid Microstrip Coplanar Waveguide Structure

microstrip coplanar waveguide structure is designed. The passive elements are realized using the microstrip, coplanar waveguide (CPW) and transitions between microstrip and CPW. A high pass filter prototype and a connecting capacitor between input and output ports is used to design a UWB bandpass filter having three transmission poles in UWB band. Capacitor acts as a controlling element for UWB band. Quasi-lumped microstrip structure is used to realize high pass filter elements and connecting capacitor can be realized using parallel coupled microstrip stubs. The coupling between top microstrip and bottom CPW helps to get a flat band within 3.1 to 10.6 GHz.

References

- Rainee N. Simons, Coplanar Waveguide Circuits, Components and Systems, John
Wiley Sons, Inc.
- Mentor Graphics IE3D electromagnetic simulator.

Index Terms

Computer Science
Wireless Communications

Keywords

Microstrip Coplanar Waveguide Ultrawideband Bandpass Filter Coupling High Pass Filter.