Abstract

Osteoarthritis (OA) is commonly seen among older people and it is arthritic type disease. It is a degenerative joint disease where cartilage slowly degenerates. Cartilage that shelters the bone ensures the smooth crusade of the joints. In knee OA, exaggerated bones come into contact due to degradation of cartilage, causing swell, discomfort and defeat of motion. Due to stress, knee joints can be frequently incapacitated and broken. The early detection of KOA could alert people to slow down the progression of the illness. Encouraged by this, the paper presents an
automatic method to diagnose the Osteoarthritis disease. The cartilage of knee joint is
segmented with pixel based segmentation method. For segmentation the texture filter method
is applied. From segmented image cartilage area is calculated and depending on its estimated
value image is classified into normal and OA affected. Osteoarthritis (OA) is commonly seen
among older people and it is arthritic type disease. It is a degenerative joint disease where
cartilage slowly degenerates. Cartilage that shelters the bone ensures the smooth crusade of
the joints. In knee OA, exaggerated bones come into contact due to degradation of cartilage,
causing swell, discomfort and defeat of motion. Due to stress, knee joints can be frequently
incapacitated and broken. The early detection of KOA could alert people to slow down the
progression of the illness. Encouraged by this, the paper presents an automatic method to
diagnose the Osteoarthritis disease. The cartilage of knee joint is segmented with pixel based
segmentation method. For segmentation the texture filter method is applied. From segmented
image cartilage area is calculated and depending on its estimated value image is classified into
normal and OA affected.

References

- Chao Jin, Yang Yang, Zu Jun Xae, Ke-Min Liu, Jing Liu, "Automated analysis
 method for screening knee Osteoarthritis using medical Infrared Thermography",
- M. S. Mallikarjuna Swamy, Mallikarjun S. Holi, "Knee Joint Articular Cartilage
 Segmentation, Visualization and Quantification using Image Processing Techniques: A
 19, March 2012.
- Sanjeevakumar Kubakaddi, Dr KM Ravikumar, "Measurement of Cartilage
 Thickness for Early Detection of Knee Osteoarthritis (KOA)", 2013 IEEE Point-of-Care
- M S Mallikarjuna Swamy & Mallikarjun S Holi, "Knee Joint Articular Cartilage
 Segmentation using Radial Search Method, Visualization and Quantification",
- Pierre Dodin, Jean Pierre Pelletier, Johanne Martel Pelletier and François Abram,
 "Automatic human knee cartilage segmentation from 3D magnetic resonance images",
- Jose G. Tamez Pena, Joshua Farber, Patricia C. Gonzalez, Edward Schreyer, Erika
 Schneider, and Saara Totterman, "Unsupervised segmentation and quantification of
 anatomical knee features: Data from the Osteoarthritis Initiative",
- Peter M. M. Cashman, Richard I. Kitney, Munir A. Gariba, and Mary E. Carter,
 "Automated techniques for visualization and mapping of articular cartilage in MR images"
of the osteoarthritic knee: a base technique for the assessment of microdamage and submicro
- Poh C. L. and Richard I. K., "Viewing interfaces for segmentation and
measurement results", Proc. of 27th Annual Conf. IEEE Engineering in Medicine and
Biology, Shanghai, China, pp. 5132-5135.
- Chao Jin, Yang Yang, Zu Jun Xae, Ke-Min Liu, Jing Liu, "Automated analysis
- Kshirsagar, M. D. Robson, P. J. Watson, N. J. Herrod, J. A. Tyler and L. D. Hall,
&quot;Computer analysis of MR images of human knee joints to measure femoral cartilage
thickness&quot;, Proc. of 18th Annual Int. Conf. IEEE.
- Zohara A. Cohen, Denise M. Mccarthy, S. Daniel Kwak, Perrine Legrand, Fabian
Fogarasi, Edward J. Ciaccio And Gerard A. Ateshian, "Knee cartilage topography,
- Julio Carballido-Gamio, Jan S. Bauer1, Keh-Yang Lee, Stefanie Krause, and Sharmila
Majumdar, "Combined image processing techniques for characterization of MRI cartilage
of the knee&quot;, Proc. 27th Annual Conf. IEEE Engineering in Medicine and Biology,
Shanghai, China, 2005 , pp. 3043-3046.
- Tina Kapur, Paul A. Beardsley, Sarah F. Gibson, W. Eric L. Grimson, and William M.
Wells, "Model based segmentation of clinical knee MRI&quot;, Proc. of the 6th Int. Conf.
- Cristián Tejos, Laurance D. Hall, and Arturo Cárdenas-Blanco, "Segmentation of
articular cartilage using active contours and prior knowledge&quot;, Proc. of the 26th Annual
- Jinshan Tang, Steven Millington, Scott T. Acton, Jeff Crandall, and Shepard Hurwitz,
&quot;Surface extraction and thickness measurement of the articular cartilage from MR images
using directional gradient vector flow snakes&quot;, IEEE Trans. on Biomedical Engineering,
- Hussain Z. Tameem, Luis E. Selva, and Usha S. Sinha, "Morphological atlases of
knee cartilage: shape indices to analyze cartilage degradation in osteoarthritic and
non-osteoarthritic population&quot;, Proc. of 29th Annual Int. Conf. of the IEEE EMBS, Cité
- Jurgen Fripp, Sebastien Ourselin, Simon K. Warfield, and Stuart Crozier,
&quot;Automatic segmentation of the bones from MR images of the knee&quot;, Proc. IEEE
4th Int. Symposium on Biomedical Imaging (ISBI-'apos;07), Metro Washington DC, USA,

Index Terms

Computer Science

Image Processing
Keywords
Cartilage Magnetic Resonance Imaging (mri) Osteoarthritis (oa).