Abstract

Carbon nanotubes have now our day's major role. High usage of carbon nanotubes they
are applied in various fields. But in another way it creates a toxicity which is harmful for living beings, animals, and other living organism. So, we identify how biological membranes like ion channel are blocked by carbon nanotubes. SWCNTs of certain diameters can efficiently block K+, Na and other channels. So the purpose of this study to identify the inhibition process by SWCNTs in different ion channels.

References

2 / 4
(2010) Neurological disease mutations compromise a C-terminal ion pathway in the
- Sazinsky MH, Mandal AK, Arguello JM, Rosenzweig AC. (2006) Structure of the ATP
binding domain from the Archaeoglobus fulgidus Cu+-ATPase. J Biol Chem. 2006 Apr
of the calcium pump of sarcoplasmic reticulum at 2. 6 Å resolution.
MscS, a voltage-modulated and mechanosensitive channel. Science. 2002 Nov
22;298(5598):1582-7.
- Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT,
- E. Mashiach, D. Schneidman-Duhovny, N. Andrusier, R. Nussinov, and H. J.
Nucleic Acids Res. 36, W229.
- Patel Ashish 1, Suchi Smita 2, Rahman Qamar 2, , Gupta Shailendra K. 3 , and Verma
Mukesh K. 1, (2011), Single Wall Carbon Nanotubes Block Ion Passage in Mechano-Sensitive
Ion Channels by Interacting with Extracellular Domain. Vol. 7, 184–186
- Ki Ho Park1, Manish Chhowalla2*, Zafar Iqbal3, Federico Sesti1* (September 30, 2003)
Single-Walled Carbon Nanotubes: A New Class of Ion-Channel Blockers.
nanotubes suppress potassium channel activities in PC12 cells. Nanotech. 20, 285102.
(6348): 56–58.

Index Terms

Computer Science

Artificial Intelligence
Keywords
Single Wall Carbon Nanotubes Molecular Interaction Protein Data Bank