Abstract

Epilepsy is a common chronic central nervous system disorder characterized by repeated
malicious seizures. Current medications acceptable by medical practitioners till date mostly suppresses the seizures and has symptomatic relief, but no effect on epileptogenesis. In the present work, we have attempted to provide the scientific base to use the bee venom therapy (Apitherapy) which was practiced throughout ancient Egyptian, Greek and Chinese civilization to treat epilepsy. Our computational studies and molecular dynamics simulation results indicate that interaction between S100B (calcium binding protein) and melittin (a venom peptide from bee), resulted in the structural distortion and inaccessibility of calcium binding domain of S100B protein, which is required to maintain ionic imbalance due to over expressed S100B in disease conditions.

References

Structural and Dynamic Insights into S100B Protein Activity Inhibition by Melittin for the Treatment of Epilepsy

- Grigorian, M. , Andresen, S. , Tulchinsky, E. , Kriaevska, M. , Carlberg, C. , Kruse, C. , Cohn, M. , Ambartsumian, N. , Christensen, A. , Selivanova, G. , Lukanidin, E. , 2001. Tumor suppressor p53 protein is a new target for the metastasis-associated Mts1/S100A4 protein:
Structural and Dynamic Insights into S100B Protein Activity Inhibition by Melittin for the Treatment of Epilepsy

Index Terms

Computer Science

Artificial Intelligence

Keywords

Epilepsy Melittin S100b Protein-protein Interaction Ca2+ -binding Domains