Abstract

Sorting is a well interrogating issue in computer science. Many authors have invented numerous sorting algorithms on CPU (Central Processing Unit). In today’s life sorting on the CPU is not so efficient. To get the efficient sorting parallelization should be done. There are many ways of parallelization of sorting but at the present time GPU (Graphics Processing Unit) computing is the most preferable way to parallelize the sorting algorithms. Many authors have implemented the some sorting algorithms using GPU computing with CUDA. This paper mentioned the roadmap of research direction of a GPU based sorting algorithms and the various research aspects to work on GPU based sorting algorithms. These research directions
include the various sorting algorithms which are parallel (Merge, Quick, Bitonic, Odd-Even,
Count, Radix etc.) sort algorithms using GPU computing with CUDA (Compute Unified Device
Architecture). In this paper, we have tested and compared the parallel and sequential (Merge,
Quick, Count and Odd-Even sort) using dataset. The testing of parallel algorithms is done using
GPU computing with CUDA. The speedup is also measured of various parallel sorting
algorithms. The results have depicted that, the count sort is the most efficient sort due to based
on the key value. Future research will refine the performance of sorting algorithms in GPU
architecture.

References

- Greb, Alexander, and Gabriel Zachmann, 2006. GPU-ABiSort: Optimal parallel sorting
 on stream architectures. IEEE Parallel and Distributed Processing Symposium, IPDPS, 20th
 International
 processors. Proceedings of the 16th International Conference on Parallel Architecture and
 applications to nearest-neighbour search.
- Baraglia, Ranieri, et al. 2009. Sorting using bitonic network with CUDA. the 7th
 Workshop on Large-Scale Distributed Systems for Information Retrieval (LSDS-IR), Boston,
 USA.
- Leischner, Nikolaj, Vitaly Osipov, and Peter Sanders. 2010. GPU sample sort. Parallel
 & Distributed Processing (IPDPS), International Symposium on IEEE.
- Kukunas, Jim, and James Devine. 2009. GPGPU Parallel Merge Sort Algorithm.
NVIDIA Technical Report NVR-
- Oat, Christopher, Joshua Barczak, and Jeremy Shopf. 2010. Efficient spatial binning on
 the GPU. SIGGRAPH Asia
- Huang, Bonan, Jinlan Gao, and Xiaoming Li. 2009. An empirically optimized radix sort
 for gpu. Parallel and Distributed Processing with Applications, IEEE International Symposium
 on.
- Ye, Xiaochun, et al. 2010. High performance comparison-based sorting algorithm on
 many-core GPUs. Parallel & Distributed Processing (IPDPS), IEEE International Symposium
 on.
- Peters, Hagen, Ole Schulz-Hildebrandt, and Norbert Luttenberger. 2010. Fast in-place
 sorting with CUDA based on bitonic sort. Parallel Processing and Applied Mathematics.
 Springer Berlin Heidelberg, pp. 403-410.
- Peters, Hagen, Ole Schulz-Hildebrandt, and Norbert Luttenberger. 2010. Parallel
 external sorting for CUDA-enabled GPUs with load balancing and low transfer overhead.
 Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), IEEE International

2 / 4
Symposium on.
- Helluy, Philippe. 2011. A portable implementation of the radix sort algorithm in OpenCL.
- Krueger, Jens, et al. 2011. Applicability of GPU Computing for Efficient Merge in In-Memory Databases. ADMS@ VLDB.
- Gluck, Joshua. 2014. Fast GP GPU Based Quadtree Construction.
Approach for Mining Frequent Item-Set. Proc. Of Int. Conf. on Advance in Signal Processing and Communication, pp. 813-819.

Index Terms

Computer Science

Algorithms

Keywords

Gpu Cuda Parallel Sorting Algorithms.