Abstract

Breast cancer is one of the leading causes of death among the women. Mammogram analysis is the most effective method that helps in the early detection of breast cancer. Microcalcification, masses, and architectural detection in the mammogram plays an important role in the later stages of diagnosis. In this paper we propose an effective method for the detection and classification of clustered microcalcification. We applied the proposed method in
Methods towards the Classification of Clustered Microcalcification

the MIAS datasets and found the effectiveness in the detection and classification of clustered microcalcification. We also brief out in this article the methods adopted to select the features for clustered microcalcification and technique to handle the class imbalance specific to microcalcification classification problem.

References

- Maurice Samulski, "Computer Aided Detection of Lesions in Digital Mammograms using Temporal Bayesian Classifiers," University of Medical Center Nijmegen, Department of Radiology, 2005.
Methods towards the Classification of Clustered Microcalcification

- Strausz Gy, G. Horvath, B. Pataki, "Intelligent Solution for Mammography Image Diagnosis\textquotedbl", Budapest University of Technology and Economics, 2002.
- Andreadis, G. Spyrou, A. Antaraki, G. Zografos, D. Kouloheri, G. Giannakopoulou, K. S. Nikita & P. A. Ligomenides, "Combining SVM and Rule Based Classifiers for Optimal Classification in Breast Cancer Diagnosis\textquotedbl", Informatics Laboratory, Academy of Athens, Greece, 2006

Index Terms

Computer Science   Hpc Applications

Keywords

Classification  Clustered Microcalcification  Imbalanced Data Sets  Mammography