Abstract

Compression is performed to reduce the redundancy and retain information pertaining to data. In this paper, five image compression techniques have been simulated. The techniques are baseline Joint Photographic Experts Group(JPEG) , Block Truncation Coding (BTC) , Hybrid Discrete Wavelet Transform- Discrete Cosine Transform (DWT-DCT) method, Pyramid and Set Partitioning In Hierarchical Trees (SPIHT) methods. The aim of this paper is to find the best compression algorithm which satisfies our requirements. The results of simulation are shown and compared for different quality parameters of it by applying on 512x512 sized color images of Lena , Baboon and Goldhill and satellite images of earth. CPU time utilization, entropy, Peak
Signal To Noise Ratio (PSNR), bits per pixel are some of the factors considered to distinguish between the different methodologies. The results show that the best method for compression which yields a better outcome for standard images is hybrid dwt-dct method whereas for satellite images the best method is SPIHT. Considering CPU computation time, the fastest method of compression is Pyramid method. On the basis of requirement one of the above mentioned algorithms can be used.

References

- E. M. Rafael C. Gonzalez, Richard Eugene; "Digital image processing";
- Sachin Dhawan; "A Review of Image Compression and Comparison of its Algorithms"; IJECT Vol. 2, Issue 1, March 2011, I S S N : 2 2 3 0 - 7 1 0 9 (O n l i n e) | I S S N : 2 2 3 0 - 9 5 4 3 (P r i n t)
- Gregory K. Wallace; "The JPEG Still Picture Compression Standard"; Submitted in December 1991 for publication in IEEE Transactions on Consumer Electronics
- K. Somasundaram and I. Kaspar Raj; "An Image compression Scheme based on Predictive and Interpolative Absolute Moment Block Truncation Coding";
- Suchitra Shrestha and Khan Wahid; "Hybrid DWT-DCT Algorithm for Biomedical Image and Video Compression Applications"
- P. Šimíček; "Image quality evaluation in television and video technique area";
- Amir Said, William A. Pearlman; "a new fast and efficient image codec based on set partitioning in hierarchical trees"

Index Terms

Computer Science
Hpc Applications
Keywords
Btc bits Per Pixel dwt dct entropy image Compression Jpeg pyramid psnr spiht