Abstract

Sensor network has occupied an important space in current research. Small size of the sensor nodes put constraint on the hardware capabilities and battery supported on it. In this paper we have discussed threshold policy for selecting a particular state of sensor node with fixed threshold policy. Threshold policies are needed whenever to choose the better one between two or many possibilities. We investigate the dynamics on random geometric networks. Fixed threshold policy is considered that enables the sensor node to vary and continue its service so that data loss can be minimized. Work has been carried out for faulty node among intermediate nodes. The rectification is done by replacing the faulty node and to continue the
network data transfer. For fault location, the method of thresholding is applied as the energy measure. Once the node is located, it can be replaced by a redundant node. Fifty nodes have been considered in this network.

References

- Giuseppe Anastasi, Member, Marco Conti, and Mario Di Francesco, "Extending the Lifetime of Wireless Sensor Networks Through Adaptive Sleep", IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 5, NO. 3. AUGUST 2009.
- Hsien-Chou Liao, Yi-Wei Ting, Shih-Hsuan Yen, and Chou-Chen Yang, "Ant
An Approach for Faulty Node Replacement in Wireless Sensor Network

Index Terms

Computer Science

And Sensor Network

Keywords

Sensor Network Ns-2 Nam Energy Of Node