Abstract

Cloud Computing is one of the fast spreading technologies for providing utility-based IT services to its user. Large-scale virtualized data-centers are established to meet this requirement. Data centers consumes large amount of computation power for providing efficient and reliable services to its user. Such large consumption of electrical energy has increased operating cost for the service providers as well as for the service users. Moreover, a large amount of carbon dioxide is emitted, results into increased global warming in near future. From our studies we concluded that, power consumption can be reduced by live migration of the virtual machines (VM) as required and by switching off idle machines. So, we proposed a dynamic threshold
Energy Efficient Dynamic Integration of Thresholds for Migration at Cloud Data Centers

based approach for CPU utilization for host at data center. This consolidation will work on dynamic and unpredictable workload avoiding unnecessary power consumption. We will not only meet energy efficiency requirement but would also ensure quality of service to the user by minimizing the Service Level Agreement violation. We would also validate the proposed technique results with higher efficiency.

References

- Peer1 hosting site puts a survey on “Visualized: ring around the world of data center power usage”. From engadget.com, 2011
- B Heller, S Seetharaman, P Mahadevan, Y Yiakoumis, P Sharma, S Banerjee, N McKeown, “ElasticTree: Saving Energy in Data Center Networks” NSDI 2010


Jason Sonnek and Abhishek Chandra Virtual Putty: “Reshaping the Physical Footprint of Virtual Machines” HotCloud ,2009


Index Terms

Computer Science Communication and Networks

Keywords

Energy Efficient Green IT Cloud computing Live Migration CPU Utilization VM Selection

VM Placement