Abstract

A conventional round robin is a distinctive approach to the CPU scheduling algorithm. It is somehow related to the First Come First Serve approach with preemption included to give a fair chance to all the processes to execute waiting in the ready queue. A fixed time period known as time quantum is defined. The predominant round robin is an impartial algorithm since each process is given a fair share to complete its execution on its chance. No process is apportioned the CPU for more than one time quantum, so even if a fraction of time is remaining for a process to conclude its execution, the process is directed back to the ready queue and has to wait for its turn. Here, in this paper we have put forth an approach which will vanquish the
A Varied Round Robin Approach using Harmonic Mean of the Remaining Burst Time of the Processes

challenge which the conventional round robin faces.

References

- Debashee Nayak Lecturer Gandhi Institute of Technology And Management,Bhubaneswar, Odisha, India, Sanjeev Kumar Malla Student Gandhi Institute of Technology And Management,Bhubaneswar, Odisha, India, Debashree Debadarshini Student Gandhi Institute of Technology And Management,Bhubaneswar, Odisha, India, "Improved round robin scheduling using dynamic time quantum analysis"; International Journal of Computer Applications (0975 – 8887), Volume 38– No. 5, January 2012.
- Ajit Singh, Priyanka Goyal, Sahil Batra," An optimized round robin scheduling
A Varied Round Robin Approach using Harmonic Mean of the Remaining Burst Time of the Processes

- Saroj Hiranwal, Computer Science and Engineering Suresh Gyan Vihar University Jaipur, Rajasthan, India, Dr. K. C. Roy roy.krishna@rediffmail.com, Electronics and communication Engineering Pacific University Udaipur, Rajasthan, India "Adaptive Round Robin Scheduling using Shortest Burst Approach Based on Smart Time Slice", International Journal of Data Engineering (IJDE), Volume 2, Issue 3.

Index Terms

Computer Science
Confluence
Keywords
Harmonic Mean Ready Queue Time Quantum Left Over Time