Abstract
Carbon based nanomaterials such as metallic single walled carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), and graphene have been considered as some of the most promising candidates for future interconnect technology. In current deep sub-micron level technology, MWNTs have potentially provided an attractive solution over SWNT bundles. This paper presents a comprehensive analysis of propagation delay for both MWNT and SWNT bundles at different interconnect lengths (global) and shows a comparison of area for equivalent number of SWNTs in bundle and shells in MWNTs. It has been observed that irrespective of the type of CNTs, propagation delay increases with interconnect lengths. For same propagation
A Comparative Analysis of Single Walled CNT Bundle and Multi Walled CNT as Future Global VLSI Interconnects

delay performance, the area occupied by SWNT bundle is more than the MWNTs for a specified interconnect length.

Reference

A Comparative Analysis of Single Walled CNT Bundle and Multi Walled CNT as Future Global VLSI Interconnects


20. Hyperion Catalysis.


Index Terms

Computer Science

Communications

Key words

Carbon nanotube

SWNT bundle

MWNT

propagation delay

area

VLSI

nanotechnology
A Comparative Analysis of Single Walled CNT Bundle and Multi Walled CNT as Future Global VLSI Interco...