Abstract
The Artificial Intelligence research field since ages has incorporated a series of novel and
trend setting distinct approaches including neural networks, fuzzy logic and genetic algorithms
to apply them to various problem-solving domains. Machine learning techniques such as
evolutionary learning, neural networks and reinforcement learning alone are difficult to apply to
board games because they need an extremely large number of computations which are having
tendency to increase exponentially in numbers as the search depth increases to find better
move(s). Many board game researchers find that machine learning approach through
evolutionary learning using some optimization methods like genetic algorithm gives better
results to build robust and better artificially intelligent game playing programs. In case of board
game, board squares plays vital role in terms of exploring the game based topographies to
assign relative weight to board squares as per their positions. These weight assignments in
game-playing programs are derived through quality search and rules acquaintance and game
playing experience. When the move search reaches the end of a game tree structure, attained
optimized evaluation function values are used to assess board position “goodness”. The paper
takes Game of Reversi as its object game and exploits its symmetric phenomenon to develop
genetically evolutionary game playing program to learn its impact on the evolution of weight
values for a particular disc sets through weight value land scape. The collected results for the
said disc sets endorse the earnest efficacy of genetic algorithm as an evolutionary optimization
instrument. The first two sections is about game introduction and game search space. The
next section discusses history of game program development and game playing phases.
Section five and six aims game of Reversi implementation and collected results respectively.
The last two sections are about conclusion and references.

Reference

Playing Approach for Fast Processor Allocation in Hypercube Systems using Veitch diagram
65-72.
difference learning for acquiring position evaluation in small-board go. IEEE Transactions on
Evolutionary Computation, volume 1, pages 986–993, Piscataway, NJ. IEEE.
5. Hauptman and M. Sipper. Evolution of an efficient search algorithm for the Mate-in-N
6. P. Aksenov. Genetic algorithms for optimising chess position scoring. Master’s Thesis,
University of Joensuu, Finland, 2004. Y. Bjornsson and T.A. Marsland. Multi-cut
Computers and Games CG 2004, eds. H.J. van den Herik, Y. Bjornsson, and N.S. Netanyahu,
Intelligence, 19:279-320.
Artificial Intelligence, 43:21-36.


Index Terms

Computer Science
Communications

Key words

Artificial Intelligence
Board Game

Genetic Algorithm

Game of Reversi
Board Square Weight