Abstract

The mobility model used emulates closely the real-life Scenarios. The mobility model dictates the movement of nodes and plays an important role in determining the protocol and connectivity of these nodes. We describe several mobility models that represent mobile nodes whose movements are independent of each other (i.e. Entity mobility models) and several mobility models that represent mobile nodes whose movements are dependent on each other (i.e. Group mobility models) and several mobility models that represent mobile nodes whose movement in pre-defined path with the assumption of obstacles in the simulation terrain (i.e. Geographic Restriction models). The goal of this paper is to present a number of mobility
models in order to offer researchers more well-versed choices when they are deciding on a
mobility model to use in their performance evaluations. We incorporate more realistic mobility
model that includes entity models (Manhattan model and Gauss-Markov model) and group
mobility model (Reference Point Group Model) and Random Waypoint mobility model and
Geographic Restriction model (Mission Critical Model). The random way point is used as a
default mobility model in many network simulations. Our comparative analysis of the mobility
models that are existing, are discussed on a variety of simulation settings and parameters like
Packet Delivery Ratio (PDR), Average End to End Delay (ED), Control Overhead (CO),
Generated packets (GP), Dropped Packets (DP) and Received packets (RP).

References

- D. B. Johnson, D. A. Maltz, and J. Broch, "DSR: The Dynamic Source Routing
 E. Perkins, Chapter 5, Addison-Wesley, 2001 pp. 139-172.
- S. Boschi, M. Di ianni, P. Crescenzi, G. Rossi, P. Vocca, Momose: a mobility model
 simulation environment for mobile wireless ad-hoc networks, in: Proceedings of the 1st
 International Conference on Simulation Tools and Techniques for Communications, Networks
 and Systems & Workshops (Simutools), 2008, pp. 1–10.
- S. M. Mousavi, H. R. Rabiee, M. Moshref, A. Dabirmoghaddam, Mobisim: a framework for
 simulation of mobility models in mobile ad-hoc networks, in: IEEE International
 0–82.
- Ariyakhajorn, Jinthana Wannawilai, Pattana Sathitwiriyawong, Chanboon "A
 Comparative Study of Random Waypoint and Gauss-Markov Mobility Models in the
 Performance Evaluation of MANET"; Communications and Information Technologies,
- B. Divecha, A. Abraham, C. Grosan and S. Sanyal, "Impact of Node Mobility on
- C. Bettstetter, H. Hartenstein and X. Perez-Costa, "Stochastic Properties of the
 Random-Way Point Mobility Model," Wireless Networks, Vol. 10(5), September 2004,
 pp. 555 –567.
- Papageorgiou, P. Kokkinos, E. Varvarigos, Implementing distributed multicost routing
 in mobile ad hoc networks using DSR, in: 6-th ACM International Workshop on Mobility
- D. Maltz, "The Dynamic Source Routing Protocol for Multi-Hop Ad Hoc
- F. Bai, N. Sadagopan and A. Helmy, "IMPORTANT: A Framework to
 Systematically Analyze the Impact of Mobility on Performance of Routing Protocols for Ad hoc
 Networks," Proceedings of the IEEE International Conference on Computer
 Communications, March-April, 2003, pp. 825-835.
 Models in Ad-Hoc Sensor Network over DSR Protocol. Int. J. Computer Applications 42 (15);
Mobility Scenario of Dissimilar Mobility Models using the DSR Protocol in Ad-hoc Sensor Network—A Survey

Pp. 26-32

Index Terms

Computer Science Networks

Keywords

Performance Ns-2 Bonn Motion Dsr Mhn Gm Rpgm Mcm Rwp