Abstract

Game playing has been the area of research in Artificial intelligence. Particularly, board game playing programs are often described as being a combination of search and knowledge. Board Games, due to its very nature, provide dynamic environments that make them ideal area of computational intelligence theories, architectures, and algorithms. In board games, it has always been the challenging task to build a quality evaluation function. The goodness or badness of the evaluation function is determined by its accuracy, relevance, cost and outcome. All of these parameters must be addressed and the weighed results are added to an evaluation
function experimentally. Evolutionary algorithms such as Genetic algorithm are applied to the

game playing because of the very large state space of the problem. While following the natural
evolution, the fitness of an individual is defined with respect to its competitors and collaborators,
as well as to the environment. Evolutionary algorithms follow the same path to evolve game

playing programs. Among all computer board games, Go-moku, which is a variant of a Game of

GO. This paper mainly highlights how genetic algorithm can be applied to game of Go-Moku.

Reference


Evolutionary Computation, volume 1, pages 634–638, Piscataway, NJ. IEEE.


3. Jörg Denzinger, Kevin Loose, Darryl Gates, and John Buchanan. Dealing with

parameterized actions in behavior testing of commercial computer games. In Proceedings of the

IEEE 2005 Symposium on Computational Intelligence and Games (CIG), pages 37–43, 2005.

4. Matt Gilgenbach. Fun game AI design for beginners. In Steve Rabin, editor, AI Game


5. S. Schiffel and M. Thielscher. A multiagent semantics for the game description language.


Playing Approach for Fast Processor Allocation in Hypercube Systems using Veitch diagram


65-72.

difference learning for acquiring position evaluation in small-board go. IEEE Transactions on


Evolutionary Computation, volume 1, pages 986–993, Piscataway, NJ. IEEE.


10. P. Aksenov. Genetic algorithms for optimising chess position scoring. Master’s Thesis,

University of Joensuu, Finland, 2004. Y. Björnsson and T.A. Marsland. Multi-cut


Computers and Games CG 2004, eds. H.J. van den Herik, Y. Björnsson, and N.S. Netanyahu,


12. A. Hauptman and M. Sipper. Using genetic programming to evolve chess endgame


Index Terms

Computer Science
Communications

Key words

Deterministic Games
Board Games

Go-Moku

Chromosome

Fitness function